دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: کامپیوتر ویرایش: نویسندگان: Sanjay Kumar, Rohit Raja, Alok Kumar Singh Kushwaha, Saurabh Kumar, Raj Kumar Patra سری: Computer Science, Technology and Applications ISBN (شابک) : 1685073573, 9781685073572 ناشر: Nova Science Publishers سال نشر: 2021 تعداد صفحات: 386 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Green Computing and Its Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب محاسبات سبز و کاربردهای آن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
محاسبات سبز روش نوظهور استفاده از محاسبات و منابع فناوری اطلاعات به طور کارآمدتر و در عین حال حفظ یا بهبود عملکرد کلی است. رایج ترین فناوری ها شامل طبقه بندی و خوشه بندی است که برای پیش بینی داده ها بسیار مورد استفاده قرار می گیرند. این الگوریتمها همچنین راه را برای غلبه بر چالشهایی که در زندگی روزمره با آنها روبرو هستیم هموار میکنند. مجموعه داده های عظیمی طبقه بندی و خوشه بندی می شوند تا نتیجه دقیق را بیابند. دقت و میزان خطا نیز برای رگرسیون، طبقهبندی و خوشهبندی برای یافتن نتیجه واقعی محاسبه میشود. برنامه های کاربردی شامل تشخیص تقلب، پردازش تصویر، تشخیص پزشکی، پیش بینی آب و هوا و غیره است. این کتاب برای محققان صنعتی و دانشگاهی، دانشمندان و مهندسان فناوری اطلاعات، محاسبات سبز، علوم داده و یادگیری ماشین و عمیق در نظر گرفته شده است.
Green computing is the emerging practice of using computing and information technology resources more efficiently while maintaining or improving overall performance. The most common technologies include classification and clustering which are very much in use to predict data. These algorithms also pave the way for overcoming the challenges we face in daily life. Huge data sets are classified and clustered to find out the accurate result. The accuracy and error rate are also calculated for regression, classification and clustering to find out the actual result. The applications include fraud detection, image processing, medical diagnosis, predicting weather etc. Going further, the applications have been increasing in different areas and fields. This book is intended for industrial and academic researchers, scientists and engineers in information technology, green computing, data science, and machine and deep learning.
Contents Preface Chapter 1 Embedded Internet of Things (IoT) a New Industrial Revolution Abstract 1.1. Introduction 1.1.1. Evolution of Industry 1.1.2. Industry 1.0 1.1.3. Industry 2.0 1.1.4. Industry 3.0 1.1.5. Industry 4.0 1.2. What Do You Think Industry 5.0 Will Be? 1.2.1. The Advantages and Disadvantages of the Industrial Revolution 1.2.1.1. Pros 1.2.1.2. Cons 1.3. Literature 1.3.1. Premiere Development Technologies for Industrial 4.0 1.3.2. Characteristics of the Internet of Things 1.4. Applications of IoT 1.4.1. Detection and Tracking of Assets in Smart Factories Using Bluetooth Low Energy 1.4.2. Applications for Audio Speech Processing in the Smart Home 1.4.3. Smart Health: Post-Stroke Rehabilitation by Wearable Prototype 1.4.4. Domain of the Application 1.5. Difficulties in IIOT FDSM References Chapter 2 Evolution of Green Communication System Abstract 2.1. Introduction 2.1.1. Section I: UDMT System Model 2.1.1.1. Device to Device communication 2.1.1.2. Co-Operative Communication 2.1.2. Section II: Massive MIMO 2.1.2.1. MIMO Communication 2.1.2.2. Multi‐User MIMO 2.1.2.3. Massive MIMO 2.1.2.4. Challenges of Massive MIMO in 5G 2.2. Results and Discussion Conclusion References Chapter 3 Big Data Analytics Based Green Application in Text Mining and Literary World Abstract 3.1. Introduction 3.2. State-of-Art: Literary World in Big Data Text Mining 3.3. Sentiment Classification of Literary Test in Big Data Text Mining 3.3.1. Literary Argument Extraction in Big Data Text Mining 3.3.2. Blog Mining for Literary World 3.3.3. Poetry Data-Based Literary Text Mining 3.3.4. Pre-Processing of Poetry Text 3.3.5. Literary Transcript Analysis in Big Data 3.3.6. Machine Learning Algorithm in Literary Text Mining of Big Data 3.3.7. Linear Regression for Literary Text 3.3.8. Logistic Regression for Literary Text 3.3.9. Decision Tree for Literary Text 3.3.10. Support Vector Machine (SVM) for Literary Text 3.3.11. Naïve Bayes for Literary Text 3.3.12. K- Nearest Neighbour’s For Literary Text 3.3.13. Clustering for Literary Text 3.3.14. K-Means Clustering Algorithm in the Literary World of Big Data 3.3.15. Apriori Algorithm in Literary World of Big Data 3.3.16. Hierarchal Algorithm in the Literary World of Big Data Conclusion References Chapter 4 Deep Learning-Based Solution for Sustainable Agriculture Abstract 4.1. Introduction 4.2. Deep Learning 4.2.1. Convolutional Neural Network 4.2.2. Recurrent Neural Network (RNN) 4.2.3. Autoencoder 4.3. Problems in Agriculture 4.3.1. Plant Classification 4.3.2. Plant Recognition 4.3.3. Classification of Crops 4.4. Weeds and Crops Classification 4.5. Plant Disease Identification 4.6. Fruits Counting 4.7. Classification of Fruits 4.8. Available Datasets References Chapter 5 Analysing Factors Impacting the Adoption of Green Computing in Indian Universities Abstract 5.1. Introduction 5.2. Literature Review 5.3. Theoretical Framework 5.4. Research Methodology Sampling Demographics of the Respondents 5.4.1. Data Analysis Reliability and Validity (i) Cronbach’s Alpha (ii) Composite Reliability Exploratory Factor Analysis Construct Validity (CV) (i) Convergent Validity (ii) Divergent or Discriminant Validity Structural Equation Modelling (SEM) Discussion Conclusion Limitations and Future Research References Chapter 6 Latest Advancement in Automotive Embedded System Using IoT Computerization Abstract 6.1. Introduction 6.2. Related Work 6.3. Essential Embedded Systems 6.4. Internet of Things 6.4.1. IoT Based Smart Vehicles Solution 6.4.2. IoT Traffic Agents 6.5. Prologue to IoT and Automotive Cloud Services 6.5.1. IoT and Automotive Cloud Services 6.5.2. IoT Automotive Cloud Services 6.5.3. Network 6.5.4. Equipment Control and Management 6.5.5. Data Collection 6.5.6. Data Analytics 6.5.7. Data Visualization 6.5.8. Management of Configurations 6.5.9. Command Execution 6.6. Interoperability in Time 6.7. Stochastic Analysis 6.8. Multicore ECU 6.9. Utilization of IoT in Automotive Transportation 6.9.1. Intelligent Fleet Management 6.9.2. Insurance of Operational Optimization, Service Competence of Real-Time Tracking Exactness 6.9.3. Real-Time Video Surveillance on Freight Logistics 6.9.4. Risk Reduction, Operational Costs Decrease and Fleet Safety Improvement 6.9.5. Advance Driver Assistance Solution (ADAS) 6.9.6. Workers 6.9.7. Security 6.9.8. Transportation of Goods 6.10. Present Day Applications of Automotive Embedded Systems 6.11. Setup of the Experiment 6.12. GPS Tracking 6.12.1. Arduino Uno Development Board 6.13. Proposed Methodology 6.13.1. Accident Detection 6.13.2. Travelers Safety 6.13.3. Drunk Driver Prevention 6.13.4. Automatic Rain-Sensing Wipers 6.14. Results and Discussion Conclusion and Future Directions References Chapter 7 Integration of Smart-IoT Devices to Enhance Security and Performance of Smart Grids and Smart Energy Systems Abstract 7.1. Introduction 7.2. Literature Review 7.3. Proposed Smart-IoT Device Architecture Design for Smart Grid and Smart Energy Distribution 7.3.1. The Mode Selection Interface 7.3.2. RS232 Interface with PLI for Scanning and Control 7.3.3. Load Prediction Block for Analysis of Demand and Supply 7.3.4. Stability Analysis Block 7.3.5. Bi-Directional Communication Interface 7.3.6. Blockchain for Improved Attack Detection 7.4. Result Analysis and Comparison Conclusion References Chapter 8 Design of an Adaptive and Flexible Green Computing Architecture for Multi-Domain Social Applications via Artificial Intelligence Abstract 8.1. Introduction 8.2. Literature Review 8.3. Proposed Artificial Intelligence-Based Flexible Green Computing Model 8.4. Result Analysis and Comparison Conclusion References Chapter 9 Impact on Organizational Performance of Indian SMEs After the Adoption of Green Computing Abstract 9.1. Introduction 9.2. Literature Review 9.3. Research Framework 9.4. Research Methodology 9.4.1. Sampling 9.4.2. Demographics of the Respondents 9.5. Data Analysis 9.5.1. Reliability and Validity 9.5.1.1. Cronbach’s Alpha 9.5.1.2. Composite Reliability 9.5.2. Exploratory Factor Analysis 9.5.3. Construct Validity (CV) 9.5.3.1. Validity Divergent or Discriminatory 9.5.4. Structural Equation Modeling 9.5. Discussion 9.6. Managerial Implications Conclusion References Chapter 10 High-Performance Computing and Fault Tolerance Technique Implementation in Cloud Computing Abstract 10.1. Introduction 10.2. Related Work 10.2.1. Supercomputers 10.3. Cloud Computing 10.3.1. Cloud Characterization 10.3.2. Cloud Services 10.3.3. HPC in the Cloud 10.3.4. All-Cloud 10.3.4.1. Cloud Blasting 10.3.4.2. All-Cloud: Minimize the Local Footprint 10.3.5. Cloud Bursting: Expanding from Local 10.3.5.1. All-Cloud or Bursting? 10.3.5.2. HPC Performance Benchmarking 10.3.5.3. Superior Computing Requirements in Cloud 10.3.6. HPC versus HSC 10.3.7. GPU-Accelerated Computing 10.3.7.1. How GPUs Accelerate Software Applications 10.3.7.2. Memory Modes for Increased Performance on Intel Xeon Phi 10.3.7.3. HPC Software 10.3.8. Execution Penalties 10.3.9. Difficulties for High-Performance Computing Applications in the cloud 10.3.10. Cloud Benefits for High-Performance Computing 10.4. Proposed Method 10.4.1. Relocation Policy Based on Proposed Method 10.4.2. Control Module in Proposed Method 10.5. Result and Simulation Conclusion References Chapter 11 An Analysis of Internet of Things (IoT)–Based Home Appliances Abstract 11.1. Introduction 11.1.1. Identification 11.1.2. Sensing 11.1.3. Communication 11.1.4. Computation 11.1.5. Services 11.1.6. Semantics 11.1.6.1. Saving Time 11.1.6.2. Saving Energy 11.1.6.3. Cost-Efficient 11.1.6.4. Security Enhancement 11.1.6.5. Convenience 11.1.6.6. Adaptability 11.1.6.7. Integration 11.1.6.8. Task Management 11.2. IoT Technology 11.2.1. Radiofrequency Identification (RFID) 11.2.2. Wireless Sensor Networks (WSNs) 11.2.2.1. Barcodes 11.2.2.2. Near Field Communication (NFC) 11.2.2.3. Cloud Computing 11.3. IoT Based Home Appliances 11.3.1. Amazon Echo 11.3.2. Google Nest Hub 11.3.3. Nest Cam Indoor and Outdoor Camera 11.3.4. Smart Mat Intelligent Yoga Mat 11.3.5. Smart LED Bulb 11.3.6. TrackR Bravo Tracking Device 11.3.7. Honeywell Wi-Fi Smart Thermostat 11.3.8. Logitech Pop Smart Button Controller 11.3.9. June Intelligent Oven 11.3.10. Ring Pro Smart Video Doorbell 11.3.11. LG Web OS Smart OLED TV 11.4 Composition of an Advanced Smart Home Conclusion References Chapter 12 Internet of Things (IoT) in Agriculture Abstract 12.1. Introduction 12.2. Iot Transformation in THE FUTURE of Agriculture 12.2.1. Use of Smart Agriculture Iot Technology 12.2.2. Usage of Greenhouse Can Be Automated Using Iot Applications in Farming 12.2.3. Reduced Water Consumption in Agriculture 12.2.4. Pest Monitoring 12.2.5. Livestock Tracking 12.2.6. Big Data in Farming 12.2.7. Smart Agriculture Predictive Analytics 12.3. Applications of Iot in Agriculture 12.3.1. Weed Robots 12.3.2. Harvesting Robotics 12.3.3. Drones 12.3.4. Machine Navigation 12.3.5. Climatic Conditions 12.3.6. Soil Quality 12.4. Sensors Used for Agriculture 12.4.1. Agricultural Temperature Sensors 12.4.2. Smart Cameras Use in Agriculture 12.4.3. pH Sensors in Agriculture 12.4.4. GPS Sensors 12.4.5. Sensors for Resource Monitoring 12.4.6. Accelerometer Sensor 12.5. IoT Challenges in Agriculture 12.5.1. Connectivity 12.5.2. Design and Durability 12.5.3. Limited Resources and Time 12.5.4. Adaptability of Farmers’ Technology Conclusion References About the Editors Index Blank Page Blank Page