ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Gravel-Bed Rivers VI: From Process Understanding to River Restoration

دانلود کتاب رودخانه های بستر شن ششم: از درک فرآیند تا بازسازی رودخانه

Gravel-Bed Rivers VI: From Process Understanding to River Restoration

مشخصات کتاب

Gravel-Bed Rivers VI: From Process Understanding to River Restoration

ویرایش: 1 
نویسندگان:   
سری: Developments in Earth Surface Processes 11 
ISBN (شابک) : 9780444528612 
ناشر: Elsevier Science 
سال نشر: 2007 
تعداد صفحات: 850 
زبان:  
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 26 مگابایت 

قیمت کتاب (تومان) : 50,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Gravel-Bed Rivers VI: From Process Understanding to River Restoration به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب رودخانه های بستر شن ششم: از درک فرآیند تا بازسازی رودخانه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

cover.jpg......Page 1
Foreword......Page 2
sdarticle_001.pdf......Page 6
List of contributing authors......Page 9
Introduction......Page 15
Scales, scaling, and parameterization......Page 16
The scales of turbulent flow......Page 17
Roughness scales......Page 20
Scaling sediment transport......Page 24
Channel scale......Page 27
Channel pattern......Page 30
Ecological scales in rivers......Page 31
Discussion......Page 33
References......Page 37
Discussion by C.D. Rennie......Page 41
References......Page 42
Discussion by A. Roy......Page 43
References......Page 44
Reply by the author......Page 45
Introduction......Page 47
Self-organisation in gravel-bed rivers......Page 49
The bed as a degree of freedom......Page 51
The significance of spatial and temporal variability......Page 53
Quantifying within-reach variability......Page 54
Bed material......Page 55
Flow field......Page 56
Sediment transport......Page 57
Spatially distributed modelling of gravel-bed rivers......Page 58
Flow models......Page 59
Transport and morphology......Page 60
Looking ahead......Page 62
Acknowledgements......Page 64
References......Page 65
Discussion by D. Milan, G. Heritage and D. Hetherington......Page 68
References......Page 70
Discussion by C.D. Rennie......Page 71
References......Page 72
Discussion by G. Williams......Page 73
Discussion by A. Papanicolaou......Page 75
References......Page 76
Reply by the author......Page 78
References......Page 79
Introduction......Page 80
Velocity spectra in gravel-bed rivers......Page 82
Scales, hydrodynamic equations, and the double-averaging methodology......Page 89
Vertical structure of gravel bed flows......Page 92
Velocity distribution......Page 93
Bed origin and zero-plane displacement......Page 96
Fluid stresses in gravel-bed flows......Page 97
References......Page 98
Introduction......Page 101
Background......Page 102
Experimental setup......Page 103
3D-particle tracking velocimetry (3D-PTV)......Page 104
Pressure measurements by MPPS......Page 105
Velocity measurements with 1D-ADCP......Page 106
Measurement programme......Page 108
Flow above the gravel layer......Page 109
Flow within the gravel layer......Page 112
Conclusions......Page 119
References......Page 120
References......Page 122
Reply by the authors......Page 123
Introduction......Page 125
Experimental setup and data analysis......Page 127
1D model for comparison of methods......Page 129
Estimating velocities from temperature travel-time......Page 130
Comparison of the methods......Page 131
Quantifying model performance......Page 132
Performance of the 1D-model......Page 133
Travel-time......Page 134
Typical temperature regimes for selected periods at the study site......Page 135
Temperature damping......Page 138
Typical periods......Page 139
References......Page 142
References......Page 144
Discussion by John M. Buffington1 & Daniele Tonina2......Page 145
References......Page 148
Reply by the authors......Page 149
Introduction......Page 150
The onset of braiding through chute cutoff......Page 154
Laboratory investigation on the equilibrium configurations of a bifurcation......Page 157
The theoretical model of Bolla Pittaluga et al. (2003)......Page 163
Channel bifurcations with erodible banks......Page 167
Acknowledgments......Page 173
References......Page 174
Discussion by Rob Ferguson......Page 177
Reply by the authors......Page 178
Introduction......Page 180
Two-dimensional river morphodynamics......Page 183
Graded sediment......Page 186
Model settings and initial and boundary conditions......Page 187
Results and analysis......Page 188
Discussion and conclusion......Page 194
Appendix 1: List of symbols......Page 195
References......Page 196
Discussion by R. Ferguson......Page 199
Reply by the authors......Page 200
Introduction......Page 202
Flood-generating mechanism......Page 204
Position within a drainage basin......Page 205
Erosional threshold......Page 206
Sediment supply......Page 207
Land use......Page 209
Riparian vegetation......Page 210
Sediment dynamics......Page 211
Erosional and depositional features......Page 212
Ecological effects of floods......Page 213
Implications of flood effectiveness for channel management and restoration......Page 214
The geomorphic role of floods revisited......Page 217
References......Page 221
Discussion by G. Heritage and D. Milan......Page 233
Introduction......Page 235
Modelling fluvial erosion......Page 238
Erosion rate......Page 239
Erodibility of bank sediment......Page 240
Near-bank shear stresses......Page 241
Modelling river bank failures......Page 242
Methods of analysis......Page 243
Effects of pore water pressures......Page 246
Effects of vegetation......Page 248
Excess basal capacity......Page 250
A methodological framework for coupling fluvial erosion, seepage, and bank-stability models......Page 251
Acknowledgements......Page 256
References......Page 257
Discussion by Gary Williams......Page 262
Reply by the authors......Page 263
Adjustment of the bed surface size distribution of gravel-bed rivers in response to cycled hydrographs......Page 264
Introduction......Page 265
Summary of the configuration and the essential result......Page 268
Quantification of the configuration......Page 269
Exner equation of sediment conservation......Page 270
Flow hydraulics......Page 271
Surface-based bedload transport formulation......Page 272
Flow of the calculation......Page 273
Outline of and input for the numerical runs......Page 274
Results for constant flow at mobile-bed equilibrium......Page 276
Results for cycled hydrographs: formation and significance of the hydrograph boundary layer......Page 278
Comparison of results for constant flow versus cycled hydrograph......Page 288
A simpler model for the hydrograph boundary layer......Page 293
Caveats......Page 303
Conclusions......Page 304
Notations......Page 305
Acknowledgements......Page 307
References......Page 308
References......Page 309
Reply by the authors......Page 311
Discussion by Matthieu de Linares......Page 313
Reply by the authors......Page 314
Discussion by Ramon Batalla, Celso Garcia, and Damiá Vericat......Page 315
Reference......Page 317
Reply by the authors......Page 318
Introduction......Page 319
Brief historical account......Page 320
Recent developments......Page 321
A bed load model that accounts for fractional sediment transport......Page 325
Streambed structure......Page 332
Conclusions......Page 333
References......Page 334
Discussion by Lynne E. Frostick......Page 337
References......Page 338
Discussion by Gordon E. Grant......Page 339
Discussion by Murray Hicks and John Laronne......Page 340
References......Page 341
Reply by the authors......Page 342
References......Page 343
Introduction......Page 344
Method......Page 347
Results......Page 348
Scatter......Page 351
Implications of scatter......Page 354
Non-stationarity of response......Page 355
Implications......Page 357
References......Page 358
Discussion by Murray Hicks......Page 361
Reply by the authors......Page 362
Reference......Page 364
Discussion by Bob Mussetter......Page 365
Reference......Page 367
Reply by the authors......Page 368
References......Page 369
Changes in basin-scale sediment supply and transfer in a rapidly transformed New Zealand landscape......Page 370
Sensitivity......Page 371
Thresholds......Page 372
Area description......Page 373
Waiapu catchment......Page 374
Gully erosion and reforestation in the Waiapu catchment......Page 377
Decadal changes in sediment supply and transfer in response to changing land use in the Weraamaia catchment......Page 378
Raparapaririki catchment - an example of the impact of a large magnitude rainfall event on naturally forested slopes......Page 381
Gully development and sediment supply in response to rainfall in the Mangawhairiki catchment......Page 383
Discussion and conclusions......Page 384
References......Page 386
Discussion by A. Papanicolaou......Page 390
References......Page 391
Reply by the authors......Page 392
Reference......Page 393
Introduction......Page 394
Regional setting......Page 395
Methods......Page 396
Spatial structure and definition of selected variables......Page 397
Boundary conditions......Page 398
Representation of the bed......Page 401
Changes in the fraction of bedrock in the active layer......Page 402
Computing washload concentrations......Page 403
Specifying rates of erosion and deposition of mud on the bed......Page 404
Sensitivity analysis......Page 405
Results......Page 406
Interpretations of the results......Page 411
Implications for modeling geomorphic and ecological consequences of climate and land use changes......Page 412
Conclusions......Page 414
References......Page 415
Discussion by Bob Mussetter......Page 417
Reply by the authors......Page 419
Discussion by J.P. Martin Vide......Page 421
Reply by the authors......Page 422
Reference......Page 424
Reply by the authors......Page 425
Discussion by Ian Reid......Page 426
References......Page 427
Reply by the authors......Page 428
Spatial and temporal variability in stream sediment loads using examples from the Gros Ventre Range, Wyoming, USA......Page 429
Introduction......Page 430
Study sites......Page 431
Climate......Page 433
Sediment monitoring sites......Page 434
Bedload measurements......Page 435
Data on total dissolved load......Page 436
Annual and seasonal variation in sediment loads......Page 437
Estimates of annual sediment yield from two watersheds......Page 440
Variation in sediment loads following wildfire......Page 442
Discussion and conclusions......Page 445
References......Page 446
Introduction......Page 450
Regional setting......Page 454
Field methodology......Page 457
Data analysis methodology......Page 461
Within-bar and geomorphic unit scale......Page 464
Sediment mix scale......Page 467
Use of statistics to analyse sediment organisation and quantify surface facies......Page 469
Conceptual model of surface facies formation......Page 472
How this model differs from freely adjusting rivers......Page 474
Impact of human disturbance since European settlement......Page 475
Flux......Page 476
Modelling......Page 477
References......Page 478
The evolution of sediment waves influenced by varying transport capacity in heterogeneous rivers......Page 483
Wave definitions and scales......Page 484
Translation and dispersion......Page 485
Analysis: sediment waves in one-dimensional, uniform channels......Page 489
Streamwise variations in transport rate......Page 490
Influence of particle size......Page 491
Influence of abrasion......Page 492
Some three-dimensional effects......Page 494
Transport capacity and storage: spatial and temporal patterns of transmitting changes in sediment supply......Page 495
Armoring, transport intensity, and bed elevation......Page 497
Does sediment storage decrease exponentially?......Page 499
Transport-storage relations during full episodes of aggradation and degradation......Page 500
Conclusions......Page 504
Acknowledgments......Page 505
References......Page 506
Discussion by Rob Ferguson......Page 510
References......Page 511
Reply by the author......Page 512
References......Page 514
Introduction......Page 515
Bedform classification......Page 517
Field site description......Page 522
Bed state and sediment mobility......Page 523
Storage and mobility at the channel unit scale......Page 527
Sediment storage at the reach scale......Page 529
Sediment storage at the channel scale: the role of LWD......Page 533
Conclusions......Page 535
References......Page 536
Discussion by Ian Reid......Page 539
References......Page 540
Reply by the authors......Page 541
Introduction......Page 542
Riparian forest dynamics......Page 544
Effects of river regulation on regeneration processes of riparian trees......Page 548
Habitat diversity across the river-floodplain system and life history traits of fish and invertebrate......Page 549
Lateral variation of habitat across the main channel......Page 550
Effects of stream channelization on fish and invertebrate......Page 552
Loss of openwork gravel habitat with fine sediment accumulation......Page 555
Effects of the channel works on openwork gravel bed and benthic fish......Page 556
Conclusion......Page 558
References......Page 559
Introduction......Page 565
Physical setting and historical background......Page 567
Study methods......Page 568
Amount of the 20th-century incision of the Polish Carpathian rivers......Page 569
Increase in transport capacity of the rivers due to channelization works......Page 570
Reduction in sediment delivery to the rivers......Page 571
In-stream gravel mining......Page 575
Increase in sediment mobility caused by in-channel human disturbances......Page 576
Spatial variation in the course and timing of channel incision......Page 577
Importance of the main incision drivers......Page 581
Effects of the channel incision......Page 583
Concluding remarks......Page 588
References......Page 590
Discussion by R.J. Batalla and A. Rovira......Page 594
Reference......Page 595
Reply by the author......Page 596
References......Page 597
Contemporary morphological change in braided gravel-bed rivers: new developments from field and laboratory studies, with particular reference to the influence of riparian vegetation......Page 598
Introduction......Page 599
Riparian vegetation effects on channel processes and properties: a brief review......Page 600
The lower Waitaki River: changed drivers and morphologic response......Page 602
Morphological response to changed flow and sediment regimes......Page 605
Effectiveness of floods at clearing vegetation......Page 606
New surveying technologies......Page 608
Application to Waimakariri River......Page 609
Methods......Page 610
Results......Page 612
Effects on riverbed vegetation......Page 615
Monitoring methods......Page 616
Runs and results......Page 617
Discussion......Page 618
Floods vs. vegetation......Page 619
Where to with 3D monitoring?......Page 620
Conclusions......Page 621
References......Page 622
Discussion by G. Heritage, D. Milan, and D. Herrington......Page 626
References......Page 627
Reply by the authors......Page 628
Meteorological situation......Page 630
Overview......Page 631
An example of channel avulsion......Page 632
The Lütschine River......Page 633
Reuss and Schächen rivers......Page 634
Positive examples......Page 642
Mountain stream morphology......Page 643
Flood occurrence and design flood......Page 644
References......Page 645
Discussion by Gary Williams......Page 647
Reply by the author......Page 648
Introduction......Page 650
River system concepts......Page 653
Implications of hydrologic interference......Page 654
Requirements for an integrated modeling approach......Page 656
Conceptual model......Page 657
Model description......Page 658
Scenarios......Page 660
Supporting numerical and statistical models......Page 661
Basin description......Page 662
Conceptual model application to lower Kootenai......Page 664
Summary of data available to support evaluation of reference scenarios......Page 665
Operational elements......Page 666
Hydrologic regime......Page 667
Native cottonwood seedling recruitment - magnitude, timing, and rate of change......Page 668
Channel bed mobility: magnitude and timing......Page 670
Discussion of case study application......Page 672
Discussion and conclusions......Page 674
References......Page 675
Movements of a macroinvertebrate (Potamophylax latipennis) across a gravel-bed substrate: effects of local hydraulics and micro-topography under increasing discharge......Page 680
Introduction......Page 681
Rationale, aims and approach......Page 682
Experimental arrangement......Page 684
Hydraulic measurements......Page 686
Macroinvertebrate observations......Page 687
Path Maps......Page 688
Site hydraulics, general flow conditions and insect activity......Page 690
Elevation, general flow conditions and insect activity......Page 693
Discussion......Page 694
Conclusion......Page 697
Acknowledgements......Page 699
References......Page 700
References......Page 703
Reply by the authors......Page 704
Introduction......Page 706
The hydraulic geometry of stream reaches......Page 707
Hydraulic geometry of reaches and microhabitat hydraulics......Page 709
Hydraulic geometry of reaches and reach habitat values for aquatic species......Page 713
Hydraulic geometry of reaches and actual communities......Page 715
Discussion: hydraulic geometry as a tool for large-scale ecological modelling......Page 717
References......Page 718
Discussion by Rob Ferguson......Page 721
Reply by the author......Page 722
Introduction......Page 723
Methodology......Page 727
Cutting and seedling growth measurements......Page 728
Cutting growth......Page 731
Seedling growth......Page 734
The River Tummel case study......Page 735
Field studies......Page 736
Data analysis......Page 738
Vegetation and plant diversity......Page 739
Geomorphological controls on plant species recruitment and dynamics......Page 740
Significance for management of riparian corridors......Page 743
References......Page 744
River restoration in the Alps and their surroundings: past experience and future challenges......Page 747
Introduction......Page 748
Short history of river regulation: from natural to cultural landscapes......Page 749
River responses to regulation and coping with new demands and needs......Page 751
Hydropower plants and engineering measures in Austria......Page 754
In-channel mining in France......Page 755
Conclusions......Page 757
Short historical review......Page 758
General overview......Page 759
Act on channel geometry: the example of channel widening......Page 761
Act on process relationships: sustainable management of bedload......Page 762
Consider the dynamic aspects of rivers......Page 766
Relativise the idea of a historical natural state as a goal to achieve......Page 770
Transform scaling to river restoration management......Page 771
Promote mitigating day-to-day management actions......Page 772
Promote a bridge between natural, technical, and social sciences......Page 773
Acknowledgements......Page 774
References......Page 775
Discussion by G. Williams......Page 780
Reply by the authors......Page 781
Reference......Page 783
Introduction......Page 784
Significance of uncertainty......Page 787
Unreliability uncertainty and the design of reference condition channels......Page 792
Estimating pre-disturbance bankfull channel depth......Page 793
Contrasting philosophies towards uncertainty......Page 796
Where does embracing uncertainty take us?......Page 798
Conclusions......Page 801
References......Page 802
Discussion by Gary Williams......Page 806
Discussion by Gordon Grant......Page 807
Reply by the authors......Page 809
Introduction......Page 810
Methods......Page 812
Changes in channel and island area......Page 814
Loss of Islands......Page 816
Consequences for thermal heterogeneity in river water......Page 817
Discussion and conclusions......Page 820
Acknowledgements......Page 822
References......Page 823
Restoring riverine landscapes at the Drau River: successes and deficits in the context of ecological integrity......Page 825
Introduction......Page 826
General description of the study area......Page 829
Restoration programme......Page 830
General methodological aspects......Page 833
Methods: fish ecological assessment......Page 835
Description of the reference conditions (‘‘Leitbild’’)......Page 836
Assessment results......Page 837
Final evaluation of ecological status......Page 840
Conclusions and perspectives......Page 843
Acknowledgements......Page 846
References......Page 847
Discussion by M. Roberts......Page 850




نظرات کاربران