ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Graphene-Rubber Nanocomposites: Fundamentals to Applications

دانلود کتاب نانوکامپوزیت‌های گرافن-لاستیک: مبانی کاربردها

Graphene-Rubber Nanocomposites: Fundamentals to Applications

مشخصات کتاب

Graphene-Rubber Nanocomposites: Fundamentals to Applications

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781032059778, 9781003200444 
ناشر: CRC Press 
سال نشر: 2022 
تعداد صفحات: 558
[559] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 110 Mb 

قیمت کتاب (تومان) : 34,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Graphene-Rubber Nanocomposites: Fundamentals to Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نانوکامپوزیت‌های گرافن-لاستیک: مبانی کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب نانوکامپوزیت‌های گرافن-لاستیک: مبانی کاربردها

اطلاعات و تحقیقات به‌روز در مورد نانوکامپوزیت‌های گرافن-لاستیک ارائه می‌کند. شرح مفصلی از کاربردهای مختلف از حسگرها، الکترونیک انعطاف‌پذیر گرفته تا مواد محافظ حرارتی و EMI ارائه می‌کند. نانوکامپوزیت های لاستیکی مشخصات ترکیب الاستومری مبتنی بر گرافن را پوشش می دهد درک جامعی از ساختار گرافن، از جمله اصلاح شیمیایی آن برای استفاده در کامپوزیت های الاستومری ارائه می دهد.


توضیحاتی درمورد کتاب به خارجی

Provides up-to-date information and research on graphene-rubber nanocomposites Presents a detailed account of the different niche applications ranging from sensors, flexible electronics to thermal, and EMI shielding materials Offers a comprehensive know-how on the structure-property relationship of graphene-rubber nanocomposites Covers the characterization of graphene-based elastomeric composition Delivers a comprehensive understanding of the structure of the graphene, including its chemical modification for usage in elastomer composites



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Dedication
Table of Contents
Preface
Editors
Contributors
Chapter 1 Introduction to Graphene
	1.1 Introduction
	1.2 History of Graphene
	1.3 The Structure and Nomenclature
	1.4 Other 2D Nanomaterials
	1.5 Synthetic Routes to Graphene and Its Analogues
	1.6 Characterization of Graphene
	1.7 Graphene Composites
		1.7.1 Graphene 2D Heterostructures
		1.7.2 Graphene Polymer Composites
		1.7.3 Graphene Biocomposites
	1.8 Nanotoxicity of Graphene
	1.9 Conclusions
	References
Chapter 2 Graphene Synthesis and Characterization for Graphene Nanocomposites
	2.1 Introduction
	2.2 Graphene Synthesis
		2.2.1 Top-Down Synthesis
			2.2.1.1 Mechanical Exfoliation
			2.2.1.2 Chemical Exfoliation
		2.2.2 Bottom-Up Synthesis
			2.2.2.1 Chemical Vapor Deposition (CVD)
			2.2.2.2 Non-catalytic Epitaxial Growth
			2.2.2.3 Organic Synthesis
	2.3 Graphene Characterization
		2.3.1 Size and Thickness
		2.3.2 Defectiveness
		2.3.3 Transport Properties
		2.3.4 Mechanical Properties
	2.4 Conclusion
	References
Chapter 3 Synthesis and Characterization of Graphene from Non-Conventional Precursors
	3.1 Introduction
	3.2 Synthesis of Graphene
		3.2.1 Synthesis of Graphene from Biowaste and Other Biomaterials
		3.2.2 Synthesis of Graphene from Food and Food Waste
		3.2.3 Synthesis of Graphene from Industrial Waste
		3.2.4 In situ Synthesis of Doped Graphene
	3.3 Characterization of Graphene
		3.3.1 X-ray Diffraction (XRD)
		3.3.2 Raman Spectroscopy and Raman Imaging
		3.3.3 Thermogravimetric Analysis
		3.3.4 X-ray Photoelectron Spectroscopy (XPS)
		3.3.5 Field Emission Scanning Electron Microscopy (FESEM) and Energy Dispersive X-Ray (EDX) Analysis
		3.3.6 High-Resolution Transmission Electron Microscopy (HRTEM) and SAED Selected Area Electron Diffraction (SAED)
		3.3.7 Atomic Force Microscopy (AFM)
	3.4 Properties and Application of Graphene Prepared from Non-Conventional Sources
	3.5 Conclusions
	References
Chapter 4 Functionalization of Graphite and Graphene
	4.1 Introduction
	4.2 Covalent Functionalization of Graphene and Its Analogs via Carbon-Carbon Bond Formation (Small Molecules)
		4.2.1 Functionalization via Diazotization Chemistry
		4.2.2 Functionalization via Diels–Alder Reaction
		4.2.3 Functionalization via Reaction with Carbene
	4.3 Covalent Functionalization of Graphene and Its Analogs via Carbon-Carbon Bond Formation (Macromolecules)
		4.3.1 Grafting from Technique
		4.3.2 Grafting to Technique
	4.4 Covalent Functionalization of Graphene and Its Analogs via Carbon-Nitrogen Bond Formation
		4.4.1 Functionalization with Amine
		4.4.2 Functionalization with Nitrene
	4.5 Other Classes of Modified Graphene
		4.5.1 Nitrogen-Doped Graphene
		4.5.2 Carboxylated Graphene
		4.5.3 Fluorographene
	4.6 Conclusions
	References
Chapter 5 Structure-Property Relationships for the Mechanical Behavior of Rubber-Graphene Nanocomposites
	5.1 Introduction
	5.2 Mechanical Behavior of Rubber
	5.3 Reinforcement Mechanisms in Rubber-Graphene Nanocomposites
		5.3.1 Interfacial Interactions
		5.3.2 Filler Morphology
		5.3.3 Strain-Induced Crystallization
		5.3.4 Toughening Mechanisms
	5.4 Graphene Modification and Functionalization
	5.5 Effect of Graphene on Curing Kinetics
	5.6 Structural Studies
	5.7 Micromechanics, Homogenization, and Constitutive Models
	5.8 Outlook and Current Challenges
	Acknowledgment
	References
Chapter 6 Structure-Property Relationship of Graphene-Rubber Nanocomposite
	6.1 Introduction
	6.2 Graphene-Based Polymer Composite Materials
	6.3 Melt Mixing/Blending
	6.4 Solution/Latex Blending
	6.5 In Situ Polymerization
	6.6 Mechanical Properties
	6.7 Tensile Properties
	6.8 Dynamic Mechanical Properties
	6.9 Preparation of Graphene Polymer Composites
	6.10 Preparation of Graphene Rubber Composites
	6.11 Characterization of Polymer Nanocomposites
	6.12 Dispersion of Graphene
	Acknowledgments
	References
Chapter 7 Dispersion and Characterization of Graphene in Elastomer Composite
	7.1 Introduction
	7.2 Dispersion of Graphene in Elastomer Composites
	7.3 Characterization of Graphene/Elastomer Composites
	7.4 Physical Properties of Graphene/Elastomer Composites
	7.5 Conclusions
	References
Chapter 8 Graphene-Based Hybrid Fillers as New Reinforcing Agents in Rubber Compounds for the Tire Industry
	8.1 Introduction
	8.2 Experimental Section
		8.2.1 Materials
		8.2.2 Methodology
		8.2.3 Characterization of Different Composites
	8.3 Result and Discussion
		8.3.1 Effect of Loading of Carbon Black Keeping Graphene Level Constant
		8.3.2 Effect of Nature of Graphene in Hybrid Filler System
		8.3.3 Effect of Loading of Graphene in Hybrid Filler System
		8.3.4 Graphene Modified SBR Compound
		8.3.5 Comparison of Property Change in Percentage in between NR and SBR
		8.3.6 Graphene-Silica Hybrids
		8.3.7 Mechanism of Reinforcement by Hybrid Filler
	8.4 Conclusions
	8.5 Conflict of Interest
	8.6 Acknowledgments
	References
Chapter 9 Comprehensive Reviews on the Computational Micromechanical Models for Rubber-Graphene Composites
	9.1 Introduction
	9.2 Computational Micromechanical Models
		9.2.1 Constitutive Models
		9.2.2 Geometry Definition of RVE
		9.2.3 Boundary Conditions – Loading Cases
		9.2.4 Finite Element Modeling
	9.3 Results and Discussion
	9.4 Concluding Remarks
	References
Chapter 10 Simulation of Graphene Elastomer Composites
	10.1 Introduction
		10.1.1 What Is MD?
		10.1.2 Potentials in MD
		10.1.3 Ensembles in MD
		10.1.4 Thermostats
	10.2 Molecular Dynamics Methodology
		10.2.1 Modeling of Materials
		10.2.2 Modeling for Elastic Moduli, Tensile Behavior, and T[sub(g)]
		10.2.3 Modeling for Pull-Out of Graphene(Gr) from NR
	10.3 Results and Discussion
		10.3.1 Mechanical Properties
		10.3.2 Glass Transition Temperature
		10.3.3 Interfacial Properties
	10.4 Conclusions
	References
Chapter 11 Graphene-Elastomer Composites for Barrier Applications
	11.1 Introduction
	11.2 The Effect of Graphene on the Air Permeability of the Rubber Composites
	11.3 Various Rubber Materials Used for Barrier Applications
		11.3.1 Butyl Rubber
			11.3.1.1 Halogenated Butyl Rubber
		11.3.2 Epoxidized Natural Rubber (ENR)
		11.3.3 Polyepichlorohydrin Rubber (ECH)
	11.4 Preparation of Graphene-Elastomer Composites Through Different Methods
	11.5 Graphene in Butyl Rubber (IIR)-Halogenated Butyl Rubber (X)IIR and Their Blends
		11.5.1 IIR/Graphene-Rubber Nanocomposites
			11.5.1.1 CIIR/Graphene-Rubber Nanocomposites
			11.5.1.2 BIIR/Graphene Nanocomposites
		11.5.2 Bromobutyl Rubber/Epoxidized Natural Rubber/Graphene-Rubber Nanocomposites
		11.5.3 Bromobutyl Rubber/Polyepichlorohydrin Rubber/Graphene-Rubber Nanocomposites
		11.5.4 Synergism of Various Nanofillers for Improving the Dispersion of Graphene in BIIR
	11.6 Summary
	References
Chapter 12 Graphene-Thermoplastic Polyurethane Elastomer Composites: Fundamentals and Applications
	12.1 Introduction
	12.2 Graphene and Graphene-Based Materials
		12.2.1 Graphene Oxide (GO)
		12.2.2 Reduced Graphene Oxide (RGO)
		12.2.3 Graphite Nanoplatelets (GNPs)
	12.3 Thermoplastic Polyurethane Elastomer (TPE)
	12.4 Synthesis Methodologies of Graphene/TPU Nanocomposite
		12.4.1 In situ Polymerization
		12.4.2 Solution Mixing
		12.4.3 Melt Mixing
		12.4.4 Other Methods
	12.5 Microstructure of Nanocomposites
	12.6 Properties of Graphene/TPU Nanocomposites
		12.6.1 Mechanical Properties
			12.6.1.1 Tensile Properties
			12.6.1.2 Dynamic Mechanical Property
		12.6.2 Thermal Properties
			12.6.2.1 Thermal Stability
			12.6.2.2 Thermal Conductivity
		12.6.3 Electrical Properties
			12.6.3.1 Electrical Conductivity
			12.6.3.2 Dielectric Properties
		12.6.4 EMI Shielding Property
		12.6.5 Barrier Property
		12.6.6 Flame and Fire Retardant Property
		12.6.7 Shape Memory Property
	12.7 Potential Applications of Graphene/TPU Nanocomposites
		12.7.1 Solar Water Desalination
		12.7.2 Water Purification
		12.7.3 Smart Textiles and Wearable Electronics
		12.7.4 Oil Spill Cleaning
		12.7.5 Self-Healing Coating
		12.7.6 Corrosion- and Abrasion-Resistant Coating
		12.7.7 Antibacterial Coating
		12.7.8 Biomedical Applications
		12.7.9 Sensor Application
		12.7.10 Other Applications
	12.8 Conclusions
	References
Chapter 13 Role of Graphene in Tire Tread Wear Improvement
	13.1 Introduction
		13.1.1 Role of Filler in Rubber Compounds
		13.1.2 Development of Advanced Composites with New Generation Filler
	13.2 Materials and Experiments
		13.2.1 Preparation of Graphene Nanocomposites
		13.2.2 Method of Preparation and Mixing Sequence
		13.2.3 Characterization of Fillers and Rubber Composites
			13.2.3.1 Fourier Transform Infrared (FTIR) Analysis Spectroscopic
			13.2.3.2 X-Ray Diffraction (XRD) Analysis
			13.2.3.3 Transmission Electron Microscopy (TEM) Analysis
			13.2.3.4 Field Emission Scanning Electron Microscopy (FESEM) Analysis
			13.2.3.5 Atomic Force Microscopy (AFM) Analysis
			13.2.3.6 Measurement of Cure Characteristics
			13.2.3.7 Measurement of Physical Properties
			13.2.3.8 Dynamic Mechanical Properties
			13.2.3.9 Measurement of Wear Resistance by Laboratory Abrasion Tester-100 (LAT-100)
	13.3 Results and Discussion
		13.3.1 Measurement of Surface Functionality through FTIR
		13.3.2 Crystallographic Studies of Graphene and Rubber Nanocomposites
		13.3.3 TEM Analysis of Graphene and Rubber Composites
		13.3.4 FESEM Analysis of Graphene and Rubber Composites
		13.3.5 AFM Analysis of Rubber Composites
		13.3.6 Effect of Graphene on Processing Parameters
		13.3.7 Effect of Graphene on Physico-Mechanical Properties
		13.3.8 Effect of Graphene on Wear Resistance
	13.4 Conclusions
	Acknowledgments
	References
Chapter 14 Graphene-Based Elastomer Nanocomposites: A Fascinating Material for Flexible Sensors in Health Monitoring
	14.1 Introduction
	14.2 Strain Sensors Based on Graphene/Elastomer Nanocomposite
	14.3 Humidity and Glucose Detection Sensors
	14.4 Temperature Sensors
	14.5 Piezoresistive Sensors Based on Graphene/Elastomer Nanocomposite
	14.6 Summary
	Acknowledgment
	References
Chapter 15 Thermally Conducting Graphene-Elastomer Nanocomposites: Preparation, Properties, and Applications
	15.1 Introduction
	15.2 Thermally Conductive Elastomeric Composites
	15.3 Limitations of Thermally Conductive Elastomeric Composites
	15.4 Graphene Elastomeric Composite Preparation
		15.4.1 Melt Mixing
		15.4.2 Two-Roll Milling/Internal Mixing
		15.4.3 Solution/Latex Stage Mixing
		15.4.4 In situ Polymerisation
		15.4.5 Electrospinning
	15.5 Thermally Conducting Graphene/Elastomeric Composites
	15.6 Mechanisms of Thermal Conductivity of Graphene/Elastomeric Composites
	15.7 Surface Modification of Graphene vs. Thermal Conductivity
		15.7.1 Composition of Graphene
		15.7.2 Graphene Elastomer Interface
		15.7.3 Orientation of Graphene in Elastomeric Matrix
	15.8 Applications
	15.9 Conclusions
	References
Chapter 16 Graphene-Elastomer Composite for Energy Storage Applications
	16.1 Introduction
	16.2 Graphene Nanofillers
		16.2.1 Preparation Methods
			16.2.1.1 Bottom-Up Approach
			16.2.1.2 Top-Down Approach
		16.2.2 Physicochemical Properties
			16.2.2.1 Mechanical Properties
			16.2.2.2 Thermal Conductivity
			16.2.2.3 Electrical Conductivity
		16.2.3 Terminologies of Graphene-Based Materials
	16.3 Graphene-Elastomer Composites
		16.3.1 Preparation Methods
			16.3.1.1 In situ Polymerization
			16.3.1.2 Solution/Latex Blending
			16.3.1.3 Melt Mixing
		16.3.2 Physicochemical Properties
			16.3.2.1 Mechanical and Dynamic Mechanical Properties
			16.3.2.2 Thermal Conductivity
			16.3.2.3 Electrical Properties
			16.3.2.4 Dielectric Properties
	16.4 Elastomer-Graphene Composites for Energy Storage Applications
		16.4.1 Dielectric Capacitors
		16.4.2 Supercapacitors
		16.4.3 Rechargeable Batteries
		16.4.4 Thermal Energy Storage Systems
	16.5 Conclusions
	References
Chapter 17 Graphene-Elastomer Composite for Biomedical Applications
	17.1 Introduction
	17.2 Synthesis of Graphene
		17.2.1 ‘Top-Down’ Method
			17.2.1.1 Mechanical Exfoliation
			17.2.1.2 Chemical Exfoliation
			17.2.1.3 Thermal Exfoliation
		17.2.2 Bottom-Up Process
	17.3 Preparation of Graphene-Elastomer Nanocomposites
		17.3.1 Melt Mixing Process
		17.3.2 Solution Mixing
		17.3.3 In situ Process
	17.4 Surface Modification and Functionalization of Graphene
	17.5 Use of Graphene-Elastomer in Various Fields of Biomedical Applications
		17.5.1 Nanocomposites for Biomedical Application
		17.5.2 Graphene and Graphene-Based Elastomeric Nanocomposites as Nanocarrier in Therapeutic Application
			17.5.2.1 Graphene and Graphene-Based Elastomer for Drug Delivery
			17.5.2.2 DNA/RNA Delivery
			17.5.2.3 Gene Delivery
		17.5.3 Tissue Engineering
			17.5.3.1 Bone Regeneration
			17.5.3.2 Nerve Tissue Regeneration
			17.5.3.3 Cardiac and Vascular Tissue Engineering
		17.5.4 Antibacterial Agent
		17.5.5 Bioimaging
		17.5.6 Biosensors
	17.6 Conclusions and Future Prospects
	References
Chapter 18 Graphene-Elastomer Nanocomposites for Electromagnetic Interference (EMI) Shielding Applications
	18.1 Introduction
	18.2 EMI Shielding Phenomenon
	18.3 EMI Shielding Process and Mechanisms
		18.3.1 Types of EMI Shielding Mechanisms
		18.3.2 Theory of EMI Shielding
			18.3.2.1 Absorption Loss (SE[sub(A)])
			18.3.2.2 Reflection Loss (SE[sub(R)])
			18.3.2.3 Multiple Reflections (SE[sub(M)])
	18.4 EMI Shielding Materials
		18.4.1 Polymer Composites for EMI Shielding
		18.4.2 Polymer Nanocomposites (PNCs) for EMI Shielding
	18.5 Graphene: Electronic Structure and Electrical Properties
	18.6 Synthesis of Graphene
	18.7 Preparation Methods of Graphene-Elastomer Nanocomposites for EMI Shielding Applications
	18.8 Recent Progress in Graphene-Elastomer Nanocomposites for EMI Shielding
	18.9 Conclusions and Outlooks
	References
Index




نظرات کاربران