دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Gene Cheung. Enrico Magli
سری:
ISBN (شابک) : 1789450284, 9781789450286
ناشر: Wiley-ISTE
سال نشر: 2021
تعداد صفحات: 320
[325]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 11 Mb
در صورت تبدیل فایل کتاب Graph Spectral Image Processing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پردازش تصویر طیفی گراف نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پردازش تصویر طیفی نمودار، مطالعه داده های تصویربرداری از دیدگاه فرکانس نمودار است. حسگرهای تصویر مدرن طیف وسیعی از دادههای بصری از جمله تصاویر و ویدئوهای دو بعدی با وضوح فضایی بالا/عمق بیتی بالا، تصاویر فراطیفی، تصاویر میدان نور و ابرهای نقطهای سهبعدی را ضبط میکنند. زمینه پردازش سیگنال گراف - گسترش ابزارهای سنتی تجزیه و تحلیل فوریه مانند تبدیل ها و موجک ها برای مدیریت داده ها بر روی هسته های گراف نامنظم - ابزارهای محاسباتی انعطاف پذیر جدیدی را برای تجزیه و تحلیل و پردازش این انواع مختلف داده های تصویربرداری ارائه می دهد. روشهای اخیر ایدههای پردازش سیگنال گراف را با معماری شبکههای عصبی عمیق برای عملکردهای پیشرفته، با استحکام و نیازهای حافظه کوچکتر ترکیب میکنند. کتاب به دو قسمت تقسیم شده است. اولین مورد بر مبانی تئوری های پردازش سیگنال گراف، از جمله فیلتر کردن گراف، یادگیری گراف و شبکه های عصبی گراف متمرکز است. بخش دوم به جزئیات چندین برنامه تصویربرداری با استفاده از ابزارهای پردازش سیگنال گراف، از جمله فشردهسازی تصویر و ویدئو، فشردهسازی تصویر سهبعدی، بازیابی تصویر، پردازش ابر نقطهای، تقسیمبندی تصویر و طبقهبندی تصویر، و همچنین استفاده از شبکههای عصبی گراف برای پردازش تصویر میپردازد.
Graph spectral image processing is the study of imaging data from a graph frequency perspective. Modern image sensors capture a wide range of visual data including high spatial resolution/high bit-depth 2D images and videos, hyperspectral images, light field images and 3D point clouds. The field of graph signal processing – extending traditional Fourier analysis tools such as transforms and wavelets to handle data on irregular graph kernels – provides new flexible computational tools to analyze and process these varied types of imaging data. Recent methods combine graph signal processing ideas with deep neural network architectures for enhanced performances, with robustness and smaller memory requirements. The book is divided into two parts. The first is centered on the fundamentals of graph signal processing theories, including graph filtering, graph learning and graph neural networks. The second part details several imaging applications using graph signal processing tools, including image and video compression, 3D image compression, image restoration, point cloud processing, image segmentation and image classification, as well as the use of graph neural networks for image processing.
Cover Half-Title Page Title Page Copyright Page Contents Introduction to Graph Spectral Image Processing I.1. Introduction I.2. Graph definition I.3. Graph spectrum I.4. Graph variation operators I.5. Graph signal smoothness priors I.6. References Part 1. Fundamentals of Graph Signal Processing Chapter 1. Graph Spectral Filtering 1.1. Introduction 1.2. Review: filtering of time-domain signals 1.3. Filtering of graph signals 1.3.1. Vertex domain filtering 1.3.2. Spectral domain filtering 1.3.3. Relationship between graph spectral filtering and classical filtering 1.4. Edge-preserving smoothing of images as graph spectral filters 1.4. Edge-preserving smoothing of images as graph spectral filters 1.4.1. Early works 1.4.2. Edge-preserving smoothing 1.5. Multiple graph filters: graph filter banks 1.5.1. Framework 1.5.2. Perfect reconstruction condition 1.6. Fast computation 1.6.1. Subdivision 1.6.3. Precomputing GFT 1.6.4. Partial eigendecomposition 1.6.5. Polynomial approximation 1.6.6. Krylov subspace method 1.7. Conclusion 1.8. References Chapter 2. Graph Learning 2.1. Introduction 2.2. Literature review 2.2.1. Statistical models 2.2.2. Physically motivated models 2.3. Graph learning: a signal representation perspective 2.3.1. Models based on signal smoothness 2.3.2. Models based on spectral filtering of graph signals 2.3.3. Models based on causal dependencies on graphs 2.3.4. Connections with the broader literature 2.4. Applications of graph learning in image processing 2.5. Concluding remarks and future directions 2.6. References Chapter 3. Graph Neural Networks 3.1. Introduction 3.2. Spectral graph-convolutional layers 3.3. Spatial graph-convolutional layers 3.4. Concluding remarks 3.5. References Part 2. Imaging Applications of Graph Signal Processing Chapter 4. Graph Spectral Image and Video Compression 4.1. Introduction 4.1.1. Basics of image and video compression 4.1.2. Literature review 4.1.3. Outline of the chapter 4.2. Graph-based models for image and video signals 4.2.1. Graph-based models for residuals of predicted signals 4.2.2. DCT/DSTs as GFTs and their relation to 1D models 4.2.3. Interpretation of graph weights for predictive transform coding 4.3. Graph spectral methods for compression 4.3.1. GL-GFT design 4.3.2. EA-GFT design 4.3.3. Empirical evaluation of GL-GFT and EA-GFT 4.4. Conclusion and potential future work 4.5. References Chapter 5. Graph Spectral 3D Image Compression 5.1. Introduction to 3D images 5.1.1. 3D image definition 5.1.2. Point clouds and meshes 5.1.3. Omnidirectional images 5.1.4. Light field images 5.1.5. Stereo/multi-view images 5.2. Graph-based 3D image coding: overview 5.3. Graph construction 5.3.1. Geometry-based approaches 5.3.2. Joint geometry and color-based approaches 5.3.3. Separable transforms 5.4. Concluding remarks 5.5. References Chapter 6. Graph Spectral Image Restoration 6.1. Introduction 6.1.1. A simple image degradation model 6.1.2. Restoration with signal priors 6.1.3. Restoration via filtering 6.1.4. GSP for image restoration 6.2. Discrete-domain methods 6.2.1. Non-local graph-based transform for depth image denoising 6.2.2. Doubly stochastic graph Laplacian 6.2.3. Reweighted graph total variation prior 6.2.4. Left eigenvectors of random walk graph Laplacian 6.2.5. Graph-based image filtering 6.3. Continuous-domain methods 6.3.1. Continuous-domain analysis of graph Laplacian regularization 6.3.2. Low-dimensional manifold model for image restoration 6.3.3. LDMM as graph Laplacian regularization 6.4. Learning-based methods 6.4.1. CNN with GLR 6.4.2. CNN with graph wavelet filter 6.5. Concluding remarks 6.6. References Chapter 7. Graph Spectral Point Cloud Processing 7.1. Introduction 7.2. Graph and graph-signals in point cloud processing 7.3. Graph spectral methodologies for point cloud processing 7.3.1. Spectral-domain graph filtering for point clouds 7.3.2. Nodal-domain graph filtering for point clouds 7.3.3. Learning-based graph spectral methods for point clouds 7.4. Low-level point cloud processing 7.4.1. Point cloud denoising 7.4.2. Point cloud resampling 7.4.3. Datasets and evaluation metrics 7.5. High-level point cloud understanding 7.5.1. Data auto-encoding for point clouds 7.5.2. Transformation auto-encoding for point clouds 7.5.3. Applications of GraphTER in point clouds 7.5.4. Datasets and evaluation metrics 7.6. Summary and further reading 7.7. References Chapter 8. Graph Spectral Image Segmentation 8.1. Introduction 8.2. Pixel membership functions 8.2.1. Two-class problems 8.2.2. Multiple-class problems 8.2.3. Multiple images 8.3. Matrix properties 8.4. Graph cuts 8.4.1. The Mumford–Shah model 8.4.2. Graph cuts minimization 8.5. Summary 8.6. References Chapter 9. Graph Spectral Image Classification 9.1. Formulation of graph-based classification problems 9.1.1. Graph spectral classifiers with noiseless labels 9.1.2. Graph spectral classifiers with noisy labels 9.2. Toward practical graph classifier implementation 9.2.1. Graph construction 9.2.2. Experimental setup and analysis 9.3. Feature learning via deep neural network 9.3.1. Deep feature learning for graph construction 9.3.2. Iterative graph construction 9.3.3. Toward practical implementation of deep feature learning 9.3.4. Analysis on iterative graph construction for robust classification 9.3.5. Graph spectrum visualization 9.3.6. Classification error rate comparison using insufficient training data 9.3.7. Classification error rate comparison using sufficient training data with label noise 9.4. Conclusion 9.5. References Chapter 10. Graph Neural Networks for Image Processing 10.1. Introduction 10.2. Supervised learning problems 10.2.1. Point cloud classification 10.2.2. Point cloud segmentation 10.2.3. Image denoising 10.3. Generative models for point clouds 10.3.1. Point cloud generation 10.3.2. Shape completion 10.4. Concluding remarks 10.5. References List of Authors Index EULA