ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Good Code, Bad Code: Think Like a Software Engineer, Version 3

دانلود کتاب کد خوب، کد بد: مانند یک مهندس نرم افزار فکر کنید، نسخه 3

Good Code, Bad Code: Think Like a Software Engineer, Version 3

مشخصات کتاب

Good Code, Bad Code: Think Like a Software Engineer, Version 3

ویرایش:  
نویسندگان:   
سری: Manning Early Access Program 
 
ناشر: Manning Publications 
سال نشر: 2021 
تعداد صفحات: [338] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 17 Mb 

قیمت کتاب (تومان) : 52,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Good Code, Bad Code: Think Like a Software Engineer, Version 3 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب کد خوب، کد بد: مانند یک مهندس نرم افزار فکر کنید، نسخه 3 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Good Code, Bad Code MEAP V03
Copyright
Welcome
Brief Contents
Chapter 1: Code quality
	1.1 How code becomes software
	1.2 The goals of code quality
		1.2.1 Code should work
		1.2.2 Code should keep working
		1.2.3 Code should be adaptable to changing requirements
		1.2.4 Code should not reinvent the wheel
	1.3 The pillars of code quality
		1.3.1 Make code readable
		1.3.2 Avoid surprises
		1.3.3 Make code hard to misuse
		1.3.4 Make code modular
		1.3.5 Make code reusable and generalizable
		1.3.6 Make code testable and test it properly
	1.4 Does writing high-quality code slow us down?
	1.5 Summary
Chapter 2: Layers of abstraction
	2.1 Nulls and the pseudocode convention in this book
	2.2 Why use layers of abstraction?
		2.2.1 Layers of abstraction and the pillars of code quality
	2.3 Layers of code
		2.3.1 APIs and implementation details
		2.3.2 Functions
		2.3.3 Classes
		2.3.4 Interfaces
		2.3.5 When layers get too thin
	2.4 What about microservices?
	2.5 Summary
Chapter 3: Thinking about other engineers
	3.1 Your code and other engineers’ code
		3.1.1 Things that are obvious to you are not obvious to others
		3.1.2 Other engineers will inadvertently try to break your code
		3.1.3 In time, you will forget about your own code
	3.2 How will others figure out how to use your code?
		3.2.1 Looking at the names of things
		3.2.2 Looking at the data types of things
		3.2.3 Reading documentation
		3.2.4 Asking you in person
		3.2.5 Looking at your code
	3.3 Code contracts
		3.3.1 Small print in contracts
		3.3.2 Don’t rely too much on small print
	3.4 Checks and assertions
		3.4.1 Checks
		3.4.2 Assertions
	3.5 Summary
Chapter 4: Errors
	4.1 Recoverability
		4.1.1 Errors that can be recovered from
		4.1.2 Errors that cannot be recovered from
		4.1.3 Often only the caller knows if an error can be recovered from
		4.1.4 Make callers aware of errors they might want to recover from
	4.2 Robustness vs failure
		4.2.1 Fail fast
		4.2.2 Fail loudly
		4.2.3 Scope of recoverability
		4.2.4 Don’t hide errors
	4.3 Ways of signalling errors
		4.3.1 Recap: Exceptions
		4.3.2 Explicit: checked exceptions
		4.3.3 Implicit: unchecked exceptions
		4.3.4 Explicit: nullable return type
		4.3.5 Explicit: result return type
		4.3.6 Explicit: outcome return type
		4.3.7 Implicit: promise or future
		4.3.8 Implicit: returning a magic value
	4.4 Signalling errors that can’t be recovered from
	4.5 Signalling errors that a caller might want to recovered from
		4.5.1 Arguments for using unchecked exceptions
		4.5.2 Arguments for using explicit techniques
		4.5.3 My personal opinion: use an explicit technique
	4.6 Don’t ignore compiler warnings
	4.7 Summary
Chapter 5: Make code readable
	5.1 Use descriptive names
		5.1.1 Non-descriptive names make code hard to read
		5.1.2 Comments are a poor substitute for descriptive names
		5.1.3 Solution: make names descriptive
	5.2 Use comments appropriately
		5.2.1 Redundant comments can be harmful
		5.2.2 Comments are a poor substitute for readable code
		5.2.3 Comments can be great for explaining why code exists
		5.2.4 Comments can provide useful high-level summaries
	5.3 Don’t fixate on number of lines of code
		5.3.1 Avoid succinct but unreadable code
		5.3.2 Solution: make code readable, even if it requires more lines
	5.4 Stick to a consistent coding style
		5.4.1 An inconsistent coding style can cause confusion
		5.4.2 Solution: adopt and follow a style guide
	5.5 Avoid deeply nesting code
		5.5.1 Deeply nested code can be hard to read
		5.5.2 Solution: restructure to minimize nesting
		5.5.3 Nesting is often a result of doing too much
		5.5.4 Solution: break code into smaller functions
	5.6 Make function calls readable
		5.6.1 Arguments can be hard to decipher
		5.6.2 Solution: use named arguments
		5.6.3 Solution: use descriptive types
		5.6.4 Sometimes there’s no great solution
		5.6.5 What about the IDE?
	5.7 Avoid using unexplained values
		5.7.1 Unexplained values can be confusing
		5.7.2 Solution: use a well-named constant
		5.7.3 Solution: use a well-named function
	5.8 Use anonymous functions appropriately
		5.8.1 Anonymous functions can be great for small things
		5.8.2 Anonymous functions can be hard to read
		5.8.3 Solution: use named-functions instead
		5.8.4 Large anonymous functions can be problematic
		5.8.5 Solution: break large anonymous functions into named-functions
	5.9 Use shiny, new language features appropriately
		5.9.1 New features can improve code
		5.9.2 Obscure features can be confusing
		5.9.3 Use the best tool for the job
	5.10 Summary
Chapter 6: Avoid surprises
	6.1 Avoid returning magic values
		6.1.1 Magic values can lead to bugs
		6.1.2 Solution: return null or an optional
		6.1.3 Sometimes magic values can happen accidentally
	6.2 Use the null-object pattern appropriately
		6.2.1 Returning an empty collection can improve code
		6.2.2 Returning an empty string can sometimes be problematic
		6.2.3 More complicated null-objects can cause surprises
		6.2.4 A null-object implementation can cause surprises
	6.3 Avoid causing unexpected side-effects
		6.3.1 Side-effects that are obvious and intentional are fine
		6.3.2 Unexpected side-effects can be problematic
		6.3.3 Solution: avoid a side-effect or make it obvious
	6.4 Beware of mutating input parameters
		6.4.1 Mutating an input parameter can lead to bugs
		6.4.2 Solution: copy things before mutating them
	6.5 Avoid writing misleading functions
		6.5.1 Doing nothing when a critical input is missing can cause surprises
		6.5.2 Solution: make critical inputs required
	6.6 Future-proof enum handling
		6.6.1 Implicitly handling future enum values can be problematic
		6.6.2 Solution: use an exhaustive switch-statement
		6.6.3 Beware of the default case
		6.6.4 Caveat: Relying on another project’s enum
	6.7 Can’t we just solve all this with testing?
	6.8 Summary
Chapter 7: Make code hard to misuse
	7.1 Consider making things immutable
		7.1.1 Mutable classes can be easy to misuse
		7.1.2 Solution: set values only at construction time
		7.1.3 Solution: Use a design pattern for immutability
	7.2 Consider making things deeply immutable
		7.2.1 Deep mutability can lead to misuse
		7.2.2 Solution: defensively copy things
		7.2.3 Solution: use immutable data structures
	7.3 Avoid overly general data types
		7.3.1 Overly general types can be misused
		7.3.2 Pair types are easy to misuse
		7.3.3 Solution: use a dedicated type
	7.4 Dealing with time
		7.4.1 Representing time with integers can be problematic
		7.4.2 Solution: use appropriate data structures for time
	7.5 Have single sources of truth for data
		7.5.1 Second sources of truth can lead to invalid states
		7.5.2 Solution: use primary data as the single source of truth
	7.6 Have single sources of truth for logic
		7.6.1 Multiple sources of truth for logic can lead to bugs
		7.6.2 Solution: have a single source of truth
	7.7 Summary
Chapter 8: Make code modular
	8.1 Consider using dependency injection
		8.1.1 Hard-coded dependencies can be problematic
		8.1.2 Solution: use dependency injection
		8.1.3 Design code with dependency injection in mind
	8.2 Prefer depending on interfaces
		8.2.1 Depending on concrete implementations limits adaptability
		8.2.2 Solution: depend on interfaces where possible
	8.3 Beware of class inheritance
		8.3.1 Class inheritance can be problematic
		8.3.2 Solution: use composition
		8.3.3 What about genuine is-a relationships?
	8.4 Classes should care about themselves
		8.4.1 Caring too much about other classes can be problematic
		8.4.2 Solution: make classes care about themselves
	8.5 Encapsulate related data together
		8.5.1 Unencapsulated data can be difficult to handle
		8.5.2 Solution: group related data into objects or classes
	8.6 Beware of leaking implementation details in return types
		8.6.1 Leaking implementation details in a return type can be problematic
		8.6.2 Solution: return a type appropriate to the layer of abstraction
	8.7 Beware of leaking implementation details in exceptions
		8.7.1 Leaking implementation details in exceptions can be problematic
		8.7.2 Solution: make exceptions appropriate to the layer of abstraction
	8.8 Summary
Chapter 9: Make code reusable and generalizable
	9.1 Beware of assumptions
		9.1.1 Assumptions can lead to bugs when code is reused
		9.1.2 Solution: avoid unnecessary assumptions
		9.1.3 Solution: if an assumption is necessary, enforce it
	9.2 Beware of global state
		9.2.1 Global state can make reuse unsafe
		9.2.2 Solution: dependency inject shared state
	9.3 Use default return values appropriately
		9.3.1 Default return values in low-level code can harm reusability
		9.3.2 Solution: provide defaults in higher-level code
	9.4 Keep function parameters focused
		9.4.1 A function that takes more than it needs can be hard to reuse
		9.4.2 Solution: make functions take only what they need
	9.5 Consider using generics
		9.5.1 Depending on a specific type limits generalizability
		9.5.2 Solution: use generics
	9.6 Summary
Chapter 10: Unit testing principles
	10.1 Unit testing primer
	10.2 What makes a good unit test?
		10.2.1 Accurately detects breakages
		10.2.2 Agnostic to implementation details
		10.2.3 Well-explained failures
		10.2.4 Understandable test code
		10.2.5 Easy and quick to run
	10.3 Focus on the public API, but don’t ignore important behaviors
		10.3.1 Important behaviors might be outside the public API
	10.4 Test doubles
		10.4.1 Reasons for using a test double
		10.4.2 Mocks
		10.4.3 Stubs
		10.4.4 Mocks and stubs can be problematic
		10.4.5 Fakes
		10.4.6 Schools of thought on mocking
	10.5 Pick and choose from testing philosophies
	10.6 Summary
Chapter 11: Unit testing practices
	11.1 Test behaviors not just functions
		11.1.1 One test case per function is often inadequate
		11.1.2 Solution: concentrate on testing each behavior
	11.2 Avoid making things visible just for testing
		11.2.1 Testing private functions is often a bad idea
		11.2.2 Solution: prefer testing via the public API
		11.2.3 Solution: split the code into smaller units
	11.3 Test one behavior at a time
		11.3.1 Testing multiple behaviors at once can lead to poor tests
		11.3.2 Solution: test each behavior in its own test case
		11.3.3 Parameterized tests
	11.4 Use shared test setup appropriately
		11.4.1 Shared state can be problematic
		11.4.2 Solution: avoid sharing state or reset it
		11.4.3 Shared configuration can be problematic
		11.4.4 Solution: define important configuration within test cases
		11.4.5 When shared configuration is appropriate
	11.5 Use appropriate assertion matchers
		11.5.1 Inappropriate matchers can lead to poorly explained failures
		11.5.2 Solution: use an appropriate matcher
	11.6 Use dependency injection to aid testability
		11.6.1 Hard-coded dependencies can make code impossible to test
		11.6.2 Solution: use dependency injection
	11.7 Some final words on testing
	11.8 Summary
Appendix A: Chocolate brownie recipe
Appendix B: Null safety and optionals
	B.1 Using null-safety
		B.1.1 Checking for nulls
	B.2 Using optional
Appendix C: Extra code examples
	C.1 The builder pattern




نظرات کاربران