ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب General Relativity and Cosmology with Engineering Applications

دانلود کتاب نسبیت عام و کیهان شناسی با کاربردهای مهندسی

General Relativity and Cosmology with Engineering Applications

مشخصات کتاب

General Relativity and Cosmology with Engineering Applications

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 9781032001623, 9781003173021 
ناشر: CRC Press; Manakin Press 
سال نشر: 2021 
تعداد صفحات: [691] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 6 Mb 

قیمت کتاب (تومان) : 40,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب General Relativity and Cosmology with Engineering Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نسبیت عام و کیهان شناسی با کاربردهای مهندسی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب نسبیت عام و کیهان شناسی با کاربردهای مهندسی

این کتاب مرجعی برای محققانی است که در زمینه نسبیت عام، مکانیک کوانتومی و گرانش کوانتومی کار می کنند. بخش عمده ای از کتاب به فرمول بندی مکانیک نسبیتی خاص، دینامیک سیالات نسبیتی خاص و تعمیم آن به نسبیت عام می پردازد که در آن میدان گرانشی توسط یک تانسور متریک توصیف می شود. تأکید بر این واقعیت است که نظریه نسبیت عام تحت همه دیئومورفیسم‌های فضا-زمان و از این رو معادلات میدان آن، یعنی معادلات میدان انیشتین برای گرانش، معادلات ماکسول در هندسه فضا-زمان منحنی و سیال دارای ویژگی تنشی است. معادلات دینامیکی در فضای زمان منحنی برای همه ناظران جهان معتبر است. تاکید در سرتاسر این واقعیت است که ماده یک میدان گرانشی ایجاد می‌کند که توسط یک متریک توصیف شده است که دارای یک تانسور انحنای ناپدیدکننده است و از این رو چنین فضا-زمانی ذاتاً منحنی هستند، یعنی نمی‌توانند به شکل مینکوسی تبدیل شوند. بخش پایانی در مکانیک کوانتومی و نظریه میدان کوانتومی وجود دارد که ابرتقارن و گرانش کوانتومی را به خواننده معرفی می‌کند. خواننده پس از مطالعه این کتاب به اندازه کافی مجهز خواهد بود تا بتواند تحقیقاتی را در زمینه گرانش کوانتومی آغاز کند، یعنی فیزیک مستقل پس‌زمینه‌ای که به دلیل مشکلات عادی‌سازی مجدد هنوز یک مشکل حل نشده است. توجه: T&F هاردبک را در هند، پاکستان، نپال، بوتان، بنگلادش و سریلانکا نمی فروشد یا توزیع نمی کند.


توضیحاتی درمورد کتاب به خارجی

This is a reference book for researchers working in the field of general relativity, quantum mechanics and quantum gravity. A major part of the book deals with the formulation of special relativistic mechanics, special relativistic fluid dynamics and its generalization to general relativity where the gravitational field is described by a metric tensor. Emphasis is laid on the fact that the general theory of relativity is of tensorial character under all dieomorphisms of space-time and hence its field equations, namely the Einstein field equations for gravitation, the Maxwell equations in a curved space-time geometry and the fluid dynamical equations in curved space time are all valid for all observers in the universe. The emphasis throughout is on the fact that matter generates a gravitational field described by a metric that has a non-vanishing curvature tensor and hence such space-times are inherently curved, ie, cannot be transformed into Minkowsian form. There is a final section on quantum mechanics and quantum field theory which introduces supersymmetry and quantum gravity to the reader. The reader after going through this book will be sufficiently well equipped to start research in quantum gravity, i.e, background independent physics which is as yet an unsolved problem owing to renormalization problems. Note: T& F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of Contents
Preface
Part I: The General Theory of Relativity and Some of Its Applications
	Chapter 1: The Special Theory of Relativity
		1.1 Conflict between Newtonian mechanics and Maxwell’s theory of electromagnetism
		1.2 The experiments of Michelson and Morley
		1.3 Study Projects
		1.4 The notion of proper time, time dilation and length contraction
		1.5 The twin paradox
		1.6 The equations of mechanics in special relativity
		1.7 Mass, velocity, momentum and energy in special relativity, Einstein’s derivation of the energy mass relation E = mc2
		1.8 Four vectors and tensors in special relativity and their Lorentz transformation laws
		1.9 The general from of the Lorentz group consisting of boosts and rotations
		1.10 The Poincare group consisting of Lorentz tranformations with space-time translations
		1.11 Irreducible representations of the Poincare group with applications to Wigner’s particle classfication theory
		1.12 Lorentz transformations of the electromagnetic field
		1.13 Relative velocity in inspecial relativity
		1.14 Fluid dynamics in special relativity
		1.15 Plasma physics and magnetohydrodynamics in special relativity
		1.16 Particle moving in a constant magnetic field in special relativity
	Chapter 2: The General Theory of Relativity
		2.1 Drawbacks with the special theory of relativity
		2.2 The principle of equivalence
		2.3 Why gravitational field is not a force ?
		2.4 Four vectors and tensors in the general theory of relativity
		2.5 Basics of Riemannian geometry
		2.6 The energy-momentum tensor of matter in a background curved metric
		2.7 Maxwell’s equations in a background curved metric
		2.8 The energy-momentum tensor of the electromagnetic field in a background curved metric
		2.9 The Einstein field equations of gravitation (i) In the absence of matter and radiation, (ii) In the presence of matter and radiation
		2.10 Proof of the consistency of the Einstein field equations with the fluid dynamical equations based on the Bianchi identity for the Einstein tensor
		2.11 The weak field limit of Einstein’s field equations is Newton’s inverse square law of gravitation
		2.12 The post-Newtonian equations of celestial mechanics, gravitation and hydrodynamics
	Chapter 3: Engineering Applications of General Relativity
		3.1 Applications of general relativity to global positioning systems
		3.2 General relativistic corrections to the Klein-Gordon wave propagation
		3.3 Calculating the effect of general relativity on the motion of a plasma with applications to estimation of the metric from the radiation field produced by the plasma in motion
		3.4 Problems with hints
		3.5 Quantum theory of fields
		3.6 Energy-momentum tensor of matter with viscous and thermal corrections
		3.7 Energy-momentum tensor of the electromagnetic field in a background curved space-time
		3.8 Relativistic Fermi fluid in a gravitational field
		3.9 The post-Newtonian approximation
		3.10 Energy-Momentum tensor of matter with viscous and thermal corrections
		3.11 Energy-momentum tensor of the electromagnetic field in a background curved spacetime
		3.12 Relativistic Fermi fluid in a gravitational field. The Dirac equation in a gravitational field has the form
		3.13 The post-Newtonian approximation
		3.14 The BCS theory of superconductivity
		3.15 Quantum scattering theory in the presence of a gravitational field
		3.16 Maxwell’s equations in the Schwarzchild space-time
		3.17 Some more problems in general relativity
		3.18 Neural networks for learning the expansion of our universe
		3.19 Quantum stochastic differential equations in general relativity
	Chapter 4: Some Basic Problems in Electromagnetics Related to General Relativity (gtr)
		4.1 Em waves and quantum communication
		4.2 Cavity resonator antennas with current source in a gravitational field
		4.3 Cq coding theorem
		4.4 Restricted quantum gravity in one spatial dimension and one time dimension
		4.5 Quantum theory of fields
		4.6 Energy-momentum tensor of matter with viscous and thermal corrections
		4.7 Energy-momentum tensor of the electromagnetic field in a background curved spacetime
		4.8 Relativistic Fermi fluid in a gravitational field
		4.9 The post-Newtonian approximation
		4.10 The BCS theory of superconductivity
		4.11 Quantum scattering theory in the presence of a gravitational field
		4.12 Maxwell’s equations in the Schwarzchild spacetime
		4.13 Some more problems in general relativity
	Chapter 5: Basic Problems in Algebra, Geometry and Differential Equations
		5.1 Algebra, Triangle geometry, Integration and basic probability
		5.2 Mechanics
		5.3 Brownian motion simulation
		5.4 Geometric series
		5.5 Surface area
		5.6 Hamiltonian mechanics from Lagrangians
		5.7 Rate of a chemical reaction
		5.8 Linearization of the Navier-Stokes Fluid equations with gravitational self interaction
		5.9 Wave equations in mechanics
		5.10 Surface of revolution
		5.11 1-D Schrodinger equation
		5.12 Lagrange’s triangle in mechanics
		5.13 Number theory
		5.14 Blurring of 3-D objects in random motion
		5.15 Commutators of products of matrices
		5.16 Path of a light ray in an medium having inhomogeneous refractive index
		5.17 Re-ection matrices
		5.18 Rotation matrices
		5.19 Jacobian formula for multiple integrals
		5.20 Existence of only five regular polyhedra in nature
		5.21 Definition of the derivative and its properties
		5.22 Pattern recognition using group representations
		5.23 Using characters of group representations to estimate the group transformation element
		5.24 Explicit formulas for the induced representation for semidirect products of finite groups
		5.25 Applications of the Extended Kalman filter and the Recursive Least Squares Algorithm to System Identification Problems using Neural Networks
		5.26 Application of neural networks to the gravitational metric estimation problem
		5.27 Problems in quantum scattering theory
		5.28 Compact operators
		5.29 Estimating the metric parameters from geodesic measurements
		5.30 Perturbations to the band structure of semiconductors
		5.31 Scattering into cones for Schrodinger Hamiltonians
		5.32 Study projects involving conventional field theory in curved background metrics
		5.33 Intuitive explanation of an invariance principle in scattering theory
		5.34 Scattering theory for the Dirac Hamiltonian in curved space-time
		5.35 Derivation of the approximate Schrodinger Hamiltonian for a particle in curved spacetime with corrections upto fourth order in the space derivatives
		5.36 Quantum scattering theory in the presence of time dependent Hamiltonians arising in general relativity
		5.37 Band structure of a semiconductor altered by a massive gravitational field
		5.38 Design of quantum gates using quantum physical systems in a gravitational field
		5.39 Quantum phase estimation
		5.40 Noisy Schrodinger equations, pure and mixed states
		5.41 Constructions using ruler and compass
		5.42 Application of the Jordan canonical form for matrices in general relativity
		5.43 Application of the Jordan canonical form in solving fluid dynamical equations when the velocity field is a small perturbation of a constant velocity field
		5.44 The Jordan canonical form
		5.45 Some topics in scattering theory in L2(Rn)
		5.46 MATLAB problems on applications of linear algebra to signal processing
		5.47 Applications of the RLS lattice algorithms to general relativity
		5.48 Knill-Laflamme theorem on quantum coding theory, a different proof
		5.49 Ashtekar’s quantization of gravity
		5.50 Example of an error correcting quantum code from quantum mechanics
		5.51 An application of the Jordan canonical form to noisy quantum theory
		5.52 An algorithm for computing the Jordan canonical form
		5.53 Rotating blackhole analysis using the tetrad formalism
		5.54 Maxwell’s equations in the rotating blackhole metric
		5.55 Some notions on operators in an infinite/finite dimensional Hilbert space
		5.56 Some versions of the quantum Boltzmann equation
Part II: Quantum Mechanics
	1 The De-Broglie Duality of particle and wave properties of matter
	2 Bohr’s correspondence principle
	3 Bohr-Sommerfeld’s quantization rules
	4 The principle of superposition of wave functions and its application to the Young double slit diffraction experiment
	5 Schrodinger’s wave mechanics and Heisenberg’s matrix mechanics
	6 Dirac’s replacement of the Poisson bracket by the quantum Lie bracket
	7 Duality between the Schrodinger and Heisenberg mechanics based on Dirac’s idea
	8 Quantum dynamics in Dirac’s interaction picture
	9 The Pauli equation: Incorporating spin in the Schrodinger wave equation in the presence of a magnetic field
	10 The Zeeman effect
	11a The spectrum of the Hydrogen atom
	11b The spectrum of particle in a 3 − D box
	11c The spectrum of a quantum harmonic oscillator
	12 Time independent perturbation theory
	13 Time dependent perturbation theory
	14 The full Dyson series for the evolution operator of a quantum system in the presence of a time varying potential
	15 The transition probabilities in the presence of a stochastically time varying potential
	16 Basics of quantum gates and their realization using perturbed quantum systems
	17 Bounded and unbounded linear operators in a Hilbert space
	18 The spectral theorem for compact normal and bounded and unbounded self-adjoint operators in a Hilbert space
	19 The general theory of Events, states and observables in the quantum theory
	20 The evolution of the density operator in the absence of noise
	21 The Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) equation for noisy quantum systems
	22 Distinguishable and indistinguishable particles
	23 The relationship between spin and statistics
	24(a) Tensor products of Hilbert spaces
	24(b) Symmetric and antisymmetric tensor products of Hilbert spaces, the Fock spaces
	24(c) Coherent/exponential vectors in the Fock spaces
	25 Creation, Conservation and Annihilation Operators in the Boson Fock Space
	26 The general theory of quantum stochastic processes in the sense of Hudson and Parthasarathy
	27 The quantum Ito formula of Hudson and Parthasarathy
	28 The general theory of quantum stochastic differential equations
	29 The Hudson-Parthasarathy noisy Schrodinger equation and the derivation of the GKSL equation from its partial trace
	30 The Feynman path integral for solving the Schrodinger equation
	31 Comparison between the Hamiltonian (Schrodinger-Heisenberg) and Lagrangian (path integral) approaches to quantum mechanics
	32 The quantum theory of fields
	33 Dirac’s wave equation in a gravitational field
	34 Canonical quantization of the gravitational field
	35 The scattering matrix for the interaction between photons, electrons, positrons and gravitons
	36 Atom interacting with a Laser
	37 The classical and quantum Boltzmann equations
	38 Bands in a semiconductor
	39 The Hartree-Fock apporoximate method for computing the wave functions of a many electron atom
	40 The Born-Oppenheimer approximate method for computing the wave functions of electrons and nuclei in a lattice
	41 The performance of quantum gates in the presence of classical and quantum noise
	42 Design of quantum gates by applying a time varying electromagnetic field on atoms and oscillators
	43 Solution of Dirac’s equation in the Coulomb potential
	44 Dirac’s equation in general radial potentials
	45 The Schrodinger equation in an electromangetic field described as a quantum stochastic process
	46 Dirac’s equation in an electromagnetic field described as a quantum stochastic process
	47 General Scattering theory, the Moller and wave operators, the scattering matrix, the Lippman-Schwinger equation for the scattering matrix, Born scattering
	48 Design of quantum gates using time dependent scattering theory
	49 Evans-Hudson flows and its application to the quantization of the fluid dynamical equations in noise
	50 Classical non-linear filtering
	51 Derivation of the extended Kalman filter (EKF) as an approximation to the Kushner filter
	52 Belavkin’s theory of non-demolition measurements and quantum filtering in coherent states based on the Hudson- Parthasarathy Boson Fock space theory of quantum noise, The quantum Kallianpur-Striebel formula
	53 Classical control of a stochastic dynamical system by error feedback based on a state observer derived from the EKF
	54 Quantum control using error feedback based on Belavkin quantum filters for the quantum state observer
	55 Lyapunov’s stability theory with application to classical and quantum dynamical systems
	56 Imprimitivity systems as a description of covariant observables under a group action
	57 Schwinger’s analysis of the interaction between the electron and a quantum electromagnetic field
	58 Quantum Control
	59 Quantum error correcting codes
	60 Quantum hypothesis testing
	61 The Sudarshan-Lindblad equation for observables in an open quantum system
	62 The Yang-Mills field and its quantization using path integrals
	63 A general remark on path integral computations for gauge invariant actions
	64 Calculation of the normalized spherical harmonics
	65 Volterra systems in quantum mechanics
	66a RLS lattice algorithms for quantum observable estimation
	66b Quantum scattering theory, the wave operators and the scattering matrix
	67 Quantum systems driven by Stroock-Varadhan martingales
Appendix
References
Index




نظرات کاربران