ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب General Aviation Aircraft Design: Applied Methods and Procedures

دانلود کتاب طراحی هواپیمای عمومی هوانوردی: روش ها و رویه های کاربردی

General Aviation Aircraft Design: Applied Methods and Procedures

مشخصات کتاب

General Aviation Aircraft Design: Applied Methods and Procedures

ویرایش: 2 
نویسندگان:   
سری:  
ISBN (شابک) : 0128184655, 9780128184653 
ناشر: Butterworth-Heinemann 
سال نشر: 2021 
تعداد صفحات: 1146 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 88 مگابایت 

قیمت کتاب (تومان) : 49,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب General Aviation Aircraft Design: Applied Methods and Procedures به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب طراحی هواپیمای عمومی هوانوردی: روش ها و رویه های کاربردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب طراحی هواپیمای عمومی هوانوردی: روش ها و رویه های کاربردی



طراحی هواپیمای عمومی هوانوردی، ویرایش دوم، همچنان بهترین منبع مهندس برای پاسخ به سؤالات واقعی طراحی هواپیما است. این کتاب برای ارائه راهنمایی‌های طراحی برای کلاس‌های اضافی هواپیما، از جمله هواپیماهای دریایی، هواپیماهای دوباله، UAS، جت‌های تجاری پرسرعت، و هواپیماهای الکتریکی گسترش یافته است. علاوه بر نیروگاه های معمولی، راهنمای طراحی برای سیستم های باتری، موتورهای الکتریکی و نیروگاه های الکتریکی کامل ارائه شده است. ویرایش دوم شامل فصول جدید است:

  • مدلسازی رانش برای توربین های گاز
  • پایداری و کنترل طولی
  • پایداری و کنترل جانبی و جهت دار

این فصل‌های جدید روش‌های عملی متعددی را برای ساده‌سازی برآورد مشتقات پایداری و معرفی ممان‌های لولا و طراحی سیستم کنترل پایه ارائه می‌کنند. علاوه بر این، همه فصل‌ها سازماندهی مجدد شده‌اند و دارای مطالب به‌روز شده با روش‌های تحلیل اضافی هستند. این نسخه همچنین مقدمه‌ای برای بهینه‌سازی طراحی با استفاده از بهینه‌سازی بال به عنوان نمونه برای مبتدیان ارائه می‌دهد.

نوشته شده توسط یک مهندس با بیش از 25 سال تجربه طراحی، مهندسان حرفه‌ای، طراحان هواپیما، آیرودینامیک‌ها، تحلیلگران سازه ، تحلیلگران عملکرد، پژوهشگران و دانشجویان مهندسی هوافضا این کتاب را به عنوان کتاب کلاسیک برای طراحی هواپیما ارزش قائل می شوند.


توضیحاتی درمورد کتاب به خارجی

General Aviation Aircraft Design, Second Edition, continues to be the engineer’s best source for answers to realistic aircraft design questions. The book has been expanded to provide design guidance for additional classes of aircraft, including seaplanes, biplanes, UAS, high-speed business jets, and electric airplanes. In addition to conventional powerplants, design guidance for battery systems, electric motors, and complete electric powertrains is offered. The second edition contains new chapters:

  • Thrust Modeling for Gas Turbines
  • Longitudinal Stability and Control
  • Lateral and Directional Stability and Control

These new chapters offer multiple practical methods to simplify the estimation of stability derivatives and introduce hinge moments and basic control system design. Furthermore, all chapters have been reorganized and feature updated material with additional analysis methods. This edition also provides an introduction to design optimization using a wing optimization as an example for the beginner.

Written by an engineer with more than 25 years of design experience, professional engineers, aircraft designers, aerodynamicists, structural analysts, performance analysts, researchers, and aerospace engineering students will value the book as the classic go-to for aircraft design.



فهرست مطالب

Front Cover
General Aviation Aircraft Design: Applied Methods and Procedures
Copyright
Dedication
Contents
Preface to the 1st Edition
Preface to the 2nd Edition
Acknowledgments for the 1st Edition
Acknowledgments for the 2nd Edition
	Disclaimer
Helpful Notes
	Helpful Websites for the Aircraft Designer
	The Greek Alphabet
	Prefixes for SI Units
	Prefixes for SI Units
	A Note About Format
	A Note About Mass and Force
	List of Abbreviations and Common Terms
	List of Variables
Chapter 1: The Aircraft Design Process
	1.1. Introduction
		1.1.1. The Contents of This Chapter
		1.1.2. Why Do We Need an Aircraft Design Process?
	1.2. General Process of Aircraft Design and Development
		1.2.1. Common Descriptions of the Design Process
		1.2.2. Fundamental Phases of the Aircraft Design Process
		1.2.3. Concepts of Importance to the Aircraft Design Process
		1.2.4. Development Timeline for Typical GA Aircraft
	1.3. Introduction to Aviation Regulations and Certification
		1.3.1. Aviation Regulations That Apply to GA Aircraft
		1.3.2. Important Regulatory Concepts
	1.4. How to Design a New Aircraft
		1.4.1. Conceptual Design Algorithm for a General Aviation Aircraft
		1.4.2. Implementation of the Conceptual Design Algorithm
	1.5. Elements of Project Engineering
		1.5.1. Project Plan
		1.5.2. Team Leadership
		1.5.3. Task Management and the Task Matrix
		1.5.4. Gantt Diagrams
		1.5.5. PERT Charts
		1.5.6. Fishbone Diagram for Preliminary Airplane Design
		1.5.7. Documentation Standards and Drawing Organizing
		1.5.8. Quality Function Deployment and a House of Quality
	1.6. Presenting the Design Project
	References
Chapter 2: Aircraft Cost Analysis
	2.1. Introduction
		2.1.1. The Content of This Chapter
		2.1.2. A Review of the State of the General Aviation Industry
		2.1.3. The Basics of Development Cost Analysis
		2.1.4. Important Concepts in Air Transport Economics
	2.2. The Estimation of Project Development Costs
		2.2.1. Development Cost of a GA Aircraft
		2.2.2. Development Cost of a Business Aircraft
		2.2.3. A Word About the Accuracy of the Eastlake Model
	2.3. Estimating Aircraft Operational Costs
		2.3.1. Direct Operational Cost of a GA Aircraft
		2.3.2. Direct Operational Cost of a Business Aircraft
		2.3.3. A Word About Aircraft Operational Cost
	Exercises
	References
Chapter 3: Initial Sizing
	3.1. Introduction
		3.1.1. The Content of This Chapter
		3.1.2. Fundamental Concepts
	3.2. Constraint Analysis
		3.2.1. General Methodology
		3.2.2. Methodology to Accommodate Normally Aspirated Piston Engines
		3.2.3. Additional Helpful Tools for Initial Sizing
	3.3. Introduction to Trade Studies
		3.3.1. Parametric Analysis
		3.3.2. Stall Speed-Cruise Speed Carpet Plot
		3.3.3. Design of Experiments
	3.4. Introduction to Design Optimization
		3.4.1. Fundamental Concepts
		3.4.2. More on Objective Functions
		3.4.3. Linear Programming
		3.4.4. Nonlinear Surfaces and Lagrange Multipliers
		3.4.5. Wing Sizing Optimization by Example
	Exercises
	References
Chapter 4: Aircraft Configuration Layout
	4.1. Introduction
		4.1.1. The Content of This Chapter
		4.1.2. Requirements, Mission, and Applicable Regulations
		4.1.3. How to Design a Good Aircraft
		4.1.4. Summary of Common Configuration Targets
		4.1.5. Past and Present Directions in Aircraft Design
		4.1.6. Aircraft Component Recognition
	4.2. The Fundamentals of the Configuration Layout
		4.2.1. Vertical Wing Location
		4.2.2. Wing Configuration
		4.2.3. Wing Dihedral
		4.2.4. Wing Structural Configuration
		4.2.5. Cabin Configuration
		4.2.6. Propeller Configuration
		4.2.7. Engine Placement
		4.2.8. Landing Gear Configuration
		4.2.9. Tail Configuration
		4.2.10. Configuration Decision Matrix
	References
Chapter 5: Aircraft Structural Layout
	5.1. Introduction
		5.1.1. The Content of This Chapter
		5.1.2. Notes on Aircraft Loads
	5.2. Aircraft Fabrication and Materials
		5.2.1. The Basics of Material Properties
		5.2.2. Various Fabrication Methods
		5.2.3. Aluminum Alloys
		5.2.4. Steel Alloys
		5.2.5. Titanium Alloys
		5.2.6. Composite Materials
	5.3. Airframe Structural Layout
		5.3.1. Important Structural Concepts
		5.3.2. Fundamental Layout of the Wing Structure
		5.3.3. Fundamental Layout of the Horizontal and Vertical Tail Structures
		5.3.4. Fundamental Layout of the Fuselage Structure
	References
Chapter 6: Aircraft Weight Analysis
	6.1. Introduction
		6.1.1. The Content of This Chapter
		6.1.2. Definitions
		6.1.3. Fundamental Weight Relations
	6.2. Initial Weight Analysis Methods
		6.2.1. Method 1: Initial Gross Weight Estimation Using Historical Relations
		6.2.2. Method 2: Historical Empty Weight Fractions
		6.2.3. Method 3: Initial Gross Weight Estimation Using Mission Analysis
	6.3. Secondary Weight Analysis Methods
	6.4. Statistical Weight Estimation Methods
		6.4.1. Weight of Aircraft Components-GA Aircraft
		6.4.2. Estimating Engine Weight
	6.5. Direct Weight Estimation Methods
		6.5.1. Direct Weight Estimation for a Wing
		6.5.2. Variation of Weight with AR
	6.6. Inertia Properties
		6.6.1. Fundamentals
		6.6.2. Reference Locations
		6.6.3. Total Weight
		6.6.4. Moment About (x0, y0, y0)
		6.6.5. Center-of-Mass, Center-of-Gravity, Centroid of a Volume
		6.6.6. Determination of CG Location by Aircraft Weighing
		6.6.7. Mass Moment of Inertia
		6.6.8. Mass Product of Inertia
		6.6.9. Principal Moments of Inertia
		6.6.10. Inertia Matrix
	6.7. The Center-of-Gravity Envelope
		6.7.1. Fundamentals
		6.7.2. Creating the CG-Envelope
		6.7.3. Loading Cloud
		6.7.4. In-Flight Movement of the CG
		6.7.5. Weight Budgeting
		6.7.6. Weight Tolerancing
	Exercises
	References
Chapter 7: Selecting the Powerplant
	7.1. Introduction
		7.1.1. The Content of This Chapter
		7.1.2. Factors Affecting the Selection of the Powerplant
		7.1.3. The Basics of Energy, Work, and Power
		7.1.4. Fundamental Definitions
		7.1.5. Fuel Basics
		7.1.6. On the Thermodynamics of the Powerplant
	7.2. Piston Engines
		7.2.1. Fundamental Definitions
		7.2.2. Basic Theory of Internal Combustion Engines
		7.2.3. The Use of Gearboxes
		7.2.4. Extracting Piston Power From Engine Performance Charts
		7.2.5. Extracting Piston Power Using the Petty Equation
		7.2.6. Piston Engine Installation
		7.2.7. Piston Engine Inlet and Exit Sizing
	7.3. Gas Turbine Engines
		7.3.1. Topics Specific to Turboprops
		7.3.2. Topics Specific to Turbojets
		7.3.3. Topics Specific to Turbofans
		7.3.4. Installation of Gas Turbines
		7.3.5. Subsonic Inlet Design
	7.4. Electric Motors and Battery Technology
		7.4.1. Basic Formulas of Electricity
		7.4.2. Battery Basics
		7.4.3. Additional Sources of Electric Energy
		7.4.4. Electric Motor Basics
	Exercises
	References
Chapter 8: The Anatomy of the Airfoil
	8.1. Introduction
		8.1.1. The Content of This Chapter
		8.1.2. Dimensional Analysis-Buckinghams Pi-Theorem
		8.1.3. Representation of Forces and Moments
		8.1.4. Properties of Typical Airfoils
		8.1.5. The Pressure Coefficient
		8.1.6. Chordwise Pressure Distribution
		8.1.7. Forces and Moment per Unit Span
		8.1.8. Center of Pressure and Aerodynamic Center
		8.1.9. The Generation of Lift
		8.1.10. Boundary Layer Basics
		8.1.11. Airfoil Stall Characteristics
		8.1.12. Analysis of Ice Accretion on Airfoils
		8.1.13. Designations of Common Airfoils
		8.1.14. Airfoil Design
	8.2. The Geometry of the Airfoil
		8.2.1. Airfoil Terminology
		8.2.2. NACA 4-Digit Airfoils
		8.2.3. NACA 5-Digit Airfoils
		8.2.4. NACA 1-Series Airfoils
		8.2.5. NACA 6-Series Airfoils
		8.2.6. NACA 7-Series Airfoils
		8.2.7. NACA 8-Series Airfoils
		8.2.8. Plotting NACA 4- and 5-Digit Airfoils
		8.2.9. Summary of NACA Airfoils
		8.2.10. Selected Famous Airfoils
	8.3. The Force and Moment Characteristics of the Airfoil
		8.3.1. The Effect of Camber
		8.3.2. The Effect of Reynolds Number
		8.3.3. The Effect of Early Flow Separation
		8.3.4. The Effect of a Trailing-Edge Flap
		8.3.5. The Effect of a Slot or Slats
		8.3.6. The Effect of Deploying a Spoiler
		8.3.7. The Effect of Leading-Edge Roughness and Surface Smoothness
		8.3.8. The Effect of Compressibility
		8.3.9. Decision Matrix for Airfoil Selection
	Exercises
	References
Chapter 9: The Anatomy of the Wing
	9.1. Introduction
		9.1.1. The Content of This Chapter
		9.1.2. Definition of Reference Area
		9.1.3. The Process of Wing Sizing
	9.2. The Trapezoidal Wing Planform
		9.2.1. Geometric Formulation of an Arbitrary Planform
		9.2.2. Geometric Formulation of the Trapezoidal Planform
		9.2.3. Geometric Formulation of a Cranked Planform
		9.2.4. Poor Mans Determination of the MGC
		9.2.5. Planform Dimensions in Terms of S, AR, and λ
		9.2.6. Wing Volume Approximation
	9.3. The Geometric Layout of the Wing
		9.3.1. Wing Aspect Ratio
		9.3.2. Wing Taper Ratio, TR or λ
		9.3.3. Wing Sweep Angle, Λ
		9.3.4. Dihedral and Anhedral, Γ
		9.3.5. Wing Twist-Washout and Washin, phi
		9.3.6. Wing Angle-of-Incidence, iW
		9.3.7. Wing Layout Properties of Selected Aircraft
	9.4. Planform Selection
		9.4.1. Methods to Present Spanwise Lift Distribution
		9.4.2. The Optimum Lift Distribution
		9.4.3. Constant Chord (``Hershey Bar´´) Planform
		9.4.4. Elliptical Planforms
		9.4.5. Straight-Tapered Planforms
		9.4.6. Compound-Tapered Planforms
		9.4.7. Swept Planforms
		9.4.8. Cranked Planforms
		9.4.9. Delta Planforms
		9.4.10. Some Exotic Planform Shapes
	9.5. Lift and Moment Characteristics of Wings
		9.5.1. Properties of the 3-Dimensional Lift Curve
		9.5.2. The Lift Model
		9.5.3. The Zero-α Lift, CL0
		9.5.4. The Lift Curve Slope, CLα
		9.5.5. The Maximum Lift Coefficient, CLmax
		9.5.6. The Wing Pitching Moment Coefficient
		9.5.7. The Lift Curve for a Delta Wing
		9.5.8. Adding Nonlinearity to Lift Curve
		9.5.9. The Law of Effectiveness
		9.5.10. Flexible Wings
		9.5.11. Ground Effect
		9.5.12. Determination of Span Efficiency, e
	9.6. Wing Stall Characteristics
		9.6.1. Growth of Flow Separation on an Aircraft
		9.6.2. Deviation From the Generic Stall Pattern
		9.6.3. Tailoring the Stall Progression
		9.6.4. Cause of Spanwise Flow for a Swept Back Wing Planform
		9.6.5. Pitch-Up Stall Boundary for a Swept Back Wing Planform
		9.6.6. Influence of Manufacturing Tolerances on Stall Characteristics
	9.7. Prandtls Lifting-Line Theory
		9.7.1. Introduction
		9.7.2. Prandtls Lifting-Line Method-Special Case: The Elliptical Wing
		9.7.3. Prandtls Lifting-Line Method-Special Case: Arbitrary Wings
		9.7.4. Computer Code: Prandtls Lifting-Line Method
	Exercises
	References
Chapter 10: The Anatomy of Lift Enhancement
	10.1. Introduction
		10.1.1. The Content of This Chapter
		10.1.2. How Do I Select a High-Lift System
	10.2. Leading-Edge High-Lift Devices
		10.2.1. Leading-Edge Device Quick-Guide
		10.2.2. Hinged Leading Edge (Droop Nose)
		10.2.3. Variable Camber Leading Edge
		10.2.4. Fixed Slot
		10.2.5. The Krüger Flap
		10.2.6. The Leading-Edge Slat
		10.2.7. Summary of Leading-Edge Device Data
	10.3. Trailing-Edge High-Lift Devices
		10.3.1. Trailing-Edge Device Quick-Guide
		10.3.2. Plain Flap
		10.3.3. Split Flap
		10.3.4. Junkers Flap or External Flap
		10.3.5. Single-Slotted Flap
		10.3.6. Double-Slotted Flaps
		10.3.7. Fowler Flaps
		10.3.8. Gurney Flap
		10.3.9. Summary of Trailing-Edge Device Data
	10.4. Effect of Deploying High-Lift Devices on Wings
		10.4.1. Lift Distribution on Wings With Flaps Deflected
		10.4.2. Wing Partition Method
	10.5. Wingtip Design
		10.5.1. The Round Wingtip
		10.5.2. The Spherical Wingtip
		10.5.3. The Square Wingtip
		10.5.4. Booster Wingtips
		10.5.5. Hoerner Wingtip
		10.5.6. Küchemann Wingtip
		10.5.7. Raked Wingtip
		10.5.8. Endplate Wingtip
		10.5.9. The Winglet
		10.5.10. The Polyhedral Wing(tip)
		10.5.11. Comparison Based on Potential Flow Theory
	References
Chapter 11: The Anatomy of the Tail
	11.1. Introduction
		11.1.1. The Content of This Chapter
		11.1.2. The Process of Tail Sizing
	11.2. The Geometry of the Tail
		11.2.1. Definition of Reference Geometry
		11.2.2. Horizontal and Vertical Tail Volumes
		11.2.3. Various Tail Fixes
		11.2.4. Basics of Spin and Spin Recovery
	11.3. On the Pros and Cons of Tail Configurations
		11.3.1. Conventional Tail
		11.3.2. Cruciform Tail
		11.3.3. T-Tail
		11.3.4. V-Tail or Butterfly Tail
		11.3.5. Inverted V-Tail
		11.3.6. Y-Tail
		11.3.7. Inverted Y-Tail
		11.3.8. H-Tail
		11.3.9. A-Tail
		11.3.10. Twin Tail Boom or U-Tail Configuration
		11.3.11. Three-Surface Configuration
		11.3.12. Canard Configuration
		11.3.13. Basic Design Guidelines for Selecting a Tail Configuration
	11.4. Initial Tail Sizing Methods
		11.4.1. Recommended Initial Values for VHT and VVT
		11.4.2. Design Guidance for Initial Sizing of HT for Stick-Fixed Neutral Point
		11.4.3. General Formulation of Initial Estimation of VHT and VVT
		11.4.4. Method 1: Initial Tail Sizing Optimization Considering the Horizontal Tail Only
		11.4.5. Method 2: Initial Tail Sizing Optimization Considering the Vertical Tail Only
		11.4.6. Method 3: Initial Tail Sizing Optimization Considering Horizontal and Vertical Tail
		11.4.7. Method 4: Initial Tail Sizing Optimization for an Arbitrary Fuselage
	Exercises
	References
Chapter 12: The Anatomy of the Fuselage
	12.1. Introduction
		12.1.1. The Content of This Chapter
		12.1.2. The Function of the Fuselage
	12.2. Fundamentals of Fuselage Shapes
		12.2.1. The Frustum Shaped Fuselage
		12.2.2. The Pressure Tube Fuselage
		12.2.3. The Tadpole Fuselage
	12.3. Sizing the Fuselage
		12.3.1. Initial Design of the External Shape of the Fuselage
		12.3.2. Refining the External Shape of the Fuselage
		12.3.3. Internal Dimensions of the Fuselage
		12.3.4. Cockpit Layout
	12.4. Estimating the Geometric Properties of the Fuselage
		12.4.1. Simple Estimation of the Surface Area of a Body of Revolution
		12.4.2. Fundamental Properties of Selected Solids
		12.4.3. Surface Areas and Volumes of a Typical Tubular Fuselage
		12.4.4. Surface Areas and Volumes of a Tadpole Fuselage
		12.4.5. Surface Areas and Volumes of a Pod-Style Fuselage
	12.5. Additional Information
	References
Chapter 13: The Anatomy of the Landing Gear
	13.1. Introduction
		13.1.1. The Content of This Section
		13.1.2. Landing Gear Arrangement
		13.1.3. Landing Gear Design Checklist
	13.2. Tires, Wheels, and Brakes
		13.2.1. Important Dimensions and Concepts for Landing Gear Design
		13.2.2. Retractable Landing Gear
		13.2.3. Types and Sizes of Tires, Wheels, and Brakes
		13.2.4. Types of Landing Gear Legs
		13.2.5. Reaction of Landing Gear Forces
		13.2.6. Comparing the Ground Characteristics of Taildragger and Tricycle Landing Gear
	13.3. Geometric Layout of the Landing Gear
		13.3.1. Geometric Layout of the Tricycle Landing Gear
		13.3.2. Geometric Layout of the Taildragger Landing Gear
		13.3.3. Geometric Layout of the Monowheel Landing Gear With Outriggers
		13.3.4. Tricycle Landing Gear Reaction Loads
		13.3.5. Taildragger Landing Gear Reaction Loads
	References
Chapter 14: Thrust Modeling for Gas Turbines
	14.1. Introduction
		14.1.1. The Content of This Chapter
		14.1.2. Introduction to Thrust Modeling
		14.1.3. Fundamental Concepts of Fluid Mechanics
		14.1.4. The Basic Equations of Thermodynamics
	14.2. Theory of Reactive Thrust
		14.2.1. Conservation Laws
		14.2.2. The General Thrust Equation
		14.2.3. Propulsive Efficiency
	14.3. General Thrust Modeling for Gas Turbines
		14.3.1. Definitions
		14.3.2. Mattingly Model for a Turboprop Engine
		14.3.3. Mattingly Model for a Turbojet Engine
		14.3.4. Mattingly Model for a Turbofan Engine
		14.3.5. Computer Code: Thrust as a Function of Altitude and Mach Number
	Exercises
	References
Chapter 15: Thrust Modeling for Propellers
	15.1. Introduction
		15.1.1. The Content of This Chapter
		15.1.2. Propeller Configurations
		15.1.3. Important Nomenclature
		15.1.4. Propeller Geometry
		15.1.5. Fixed Versus Constant-Speed Propellers
	15.2. Propeller Effects
		15.2.1. Angular Momentum and Gyroscopic Effects
		15.2.2. Slipstream Effects
		15.2.3. Propeller Normal and Side Force
		15.2.4. Asymmetric Yaw Effects-Single-Engine Aircraft
		15.2.5. Asymmetric Yaw Effects-Multiengine Aircraft
		15.2.6. Blockage Effects
		15.2.7. Hub and Tip Effects
		15.2.8. Effects of High Tip Speed
		15.2.9. Skewed Wake Effects-A.q Loads
		15.2.10. Propeller Noise
	15.3. Properties and Selection of the Propeller
		15.3.1. Tips for Selecting a Suitable Propeller
		15.3.2. Rapid Estimation of Required Prop Diameter
		15.3.3. Rapid Estimation of Expected Geometric Propeller Pitch
		15.3.4. Estimation of Required Propeller Efficiency
		15.3.5. Advance Ratio
		15.3.6. Definition of Activity Factor
		15.3.7. Definition of Power and Thrust-Related Coefficients
		15.3.8. Propeller Efficiency
		15.3.9. Effect of Number of Blades on Efficiency, Thrust, and Power
		15.3.10. Moment of Inertia of the Propeller
	15.4. Determination of Propeller Thrust
		15.4.1. Converting Engine Power to Thrust
		15.4.2. Determination of Static Thrust
		15.4.3. Initial Thrust Model for a Fixed-Pitch Propeller
		15.4.4. Initial Thrust Model for a Constant-Speed Propeller
		15.4.5. Step-by-Step: Determining Thrust Using a Propeller Efficiency Table
		15.4.6. Estimating Thrust From Manufacturers Data
		15.4.7. Other Analytical Methods
	15.5. Rankine-Froude Momentum Theory
		15.5.1. Formulation for a Free Propeller
		15.5.2. Formulation for Shrouded Propellers and Ducted Fans
	15.6. Blade Element Theory
		15.6.1. Formulation
		15.6.2. Determination of w and αi Using the Momentum Theory
		15.6.3. Compressibility Corrections
		15.6.4. Prandtls Tip and Hub Loss Corrections
		15.6.5. Computer Code: Determination of the Propeller Induced Velocity
	References
Chapter 16: Aircraft Drag Analysis
	16.1. Introduction
		16.1.1. The Content of This Chapter
		16.1.2. Quick-Guide: How Do I Estimate the Drag of My Airplane?
	16.2. The Basics of Drag Modeling
		16.2.1. Fundamental Definitions
		16.2.2. Quadratic Drag Modeling
		16.2.3. Correcting the Drag Coefficient at High AOA
		16.2.4. Drag Modeling using Higher Order Polynomials
		16.2.5. Drag of a 2D Body in a Wind-Tunnel
		16.2.6. Additional Topics on Drag
		16.2.7. Various Means to Reduce Drag
	16.3. Estimating the Drag of a Complete Aircraft
		16.3.1. Estimating Skin Friction Drag: CDf
		16.3.2. Estimating Lift-Induced Drag: CDi
		16.3.3. Estimating Wave Drag: CDw
		16.3.4. Calculate CDmin Using the Rapid Drag Estimation Method
		16.3.5. Calculate CDmin Using the Component Drag Buildup Method
		16.3.6. Form Factors
		16.3.7. Interference Factors
		16.3.8. Cumulative Result of Undesirable Drag (CRUD)
		16.3.9. Total Drag Coefficient: CD
	16.4. Miscellaneous or Additive Drag
		16.4.1. Trim Drag
		16.4.2. Cooling Drag
		16.4.3. Drag of Simple Wing-like Surfaces
		16.4.4. Drag of Streamlined Struts and Landing Gear Pant Fairings
		16.4.5. Drag of Landing Gear
		16.4.6. Drag of Floats
		16.4.7. Drag of Deployed Flaps
		16.4.8. Drag of Deployed Spoilers
		16.4.9. Drag Correction for Cockpit Windows
		16.4.10. Drag of Canopies
		16.4.11. Drag of Blisters
		16.4.12. Drag of Antennas
		16.4.13. Drag of Windmilling and Stopped Propellers
		16.4.14. Drag of Parachutes
		16.4.15. Drag of Various Sources
	16.5. Special Topics Involving Drag
		16.5.1. Step-by-Step: Extracting Drag from LDmax
		16.5.2. Step-by-Step: Extracting Drag From a Flight Polar Using the Quadratic Spline Method
		16.5.3. Step-by-Step: Extracting Drag Coefficient for a Piston Powered Propeller Aircraft
		16.5.4. Extracting Drag Coefficient From Published Data for Piston Aircraft
		16.5.5. Determining Drag Characteristics From Wind Tunnel Data
	16.6. Additional Information-Drag of Selected Aircraft
		16.6.1. General Range of Subsonic Minimum Drag Coefficients
		16.6.2. Drag of Various Aircraft by Class
	Exercises
	References
Chapter 17: Performance-Introduction
	17.1. Introduction
		17.1.1. The Content of This Chapter
		17.1.2. Equations-of-Motion for Performance Theory
		17.1.3. Performance Padding Policy
	17.2. Atmospheric Modeling
		17.2.1. Classification of Atmospheric Layers
		17.2.2. Atmospheric Model for Temperature, Pressure, and Density
		17.2.3. Pressure and Density Altitudes Below 36,089ft (11,000m)
		17.2.4. Corrections for Nonstandard Atmosphere
	17.3. Airspeed Theory
		17.3.1. Airspeed Indication Systems
		17.3.2. Airspeeds: Instrument, Calibrated, Equivalent, True, and Ground
		17.3.3. Important Airspeeds for Aircraft Design and Operation
		17.3.4. Important Airspeeds for Propeller Aircraft
		17.3.5. Important Airspeeds for Subsonic Jet Aircraft
	17.4. The Structural Envelope
		17.4.1. Step-by-Step: Create a V-n Diagram
		17.4.2. Flight Envelopes for Various GA Aircraft
	17.5. Sample Aircraft
		17.5.1. Cirrus SR22
		17.5.2. Learjet 45
	Exercises
	References
Chapter 18: Performance-Take-Off
	18.1. Introduction
		18.1.1. The Content of This Chapter
		18.1.2. What Analyses Must I Do?
		18.1.3. Important Segments of the T-O Phase
	18.2. Fundamental Relations for the Take-Off Run
		18.2.1. General Free-Body Diagram for the T-O Ground Run
		18.2.2. Basic Kinematic Relations
		18.2.3. The Equation-of-Motion for the T-O Ground Run
		18.2.4. Formulation of Required Aerodynamic Forces
		18.2.5. Solution of Kinematic Problems Using Numerical Integration
		18.2.6. Determination of the Lift-Off Speed
		18.2.7. Ground Roll Friction Coefficients
		18.2.8. Determination of Time to Lift-Off
	18.3. Conducting the Take-Off Analysis
		18.3.1. Calculating the Ground Run Distance, SG
		18.3.2. Calculating the Rotation Distance, SROT
		18.3.3. Calculating the Transition Distance, STR
		18.3.4. Calculating the Climb Distance Over an Obstacle, SC
		18.3.5. Calculating the Balanced Field Length, SBFL
		18.3.6. Take-Off Sensitivity Studies
	18.4. Database-T-O Performance of Selected Aircraft
	Exercises
	References
Chapter 19: Performance-Climb
	19.1. Introduction
		19.1.1. The Content of This Chapter
		19.1.2. What Analyses Must I Do?
	19.2. Fundamental Relations for the Climb Maneuver
		19.2.1. General Equations-of-Motion for Climb
		19.2.2. Power Available, Power Required, and Excess Power
		19.2.3. Vertical Air speed in Terms of Thrust or Power
		19.2.4. Rate-of-Climb
	19.3. General Climb Analysis Methods
		19.3.1. General Expression for Rate-of-Climb
		19.3.2. General Expression for Angle-of-Climb
		19.3.3. Formulation of Best (Maximum) Rate-of-Climb
		19.3.4. Formulation of Best (Maximum) Angle-of-Climb
		19.3.5. Formulation of Specific Optimal Climb Problems
		19.3.6. Time to Altitude
		19.3.7. Absolute/Service Ceiling Altitude
		19.3.8. Numerical Analysis of the Climb Maneuver-Sensitivity Studies
	19.4. Aircraft Database-Rate-of-Climb of Selected Aircraft
	References
Chapter 20: Performance-Cruise
	20.1. Introduction
		20.1.1. The Content of This Chapter
		20.1.2. What Analyses Must I Do?
	20.2. Fundamental Relations for the Cruise Maneuver
		20.2.1. General Equations-of-Motion for Cruise
		20.2.2. Fundamental Concepts
	20.3. General Cruise Analysis Methods for Steady Flight
		20.3.1. Airspeed in Terms of Thrust
		20.3.2. Estimation of Minimum and Maximum Airspeed
		20.3.3. Estimation of Stalling Speed
		20.3.4. Airspeed of Maximum Lift-to-Drag Ratio
		20.3.5. Airspeed of Minimum Thrust Required
		20.3.6. Airspeed of Minimum Power Required
		20.3.7. Airspeeds of Maximum ROC and AOC
		20.3.8. Airspeed of Maximum Endurance
		20.3.9. Airspeed of Maximum Range
		20.3.10. Flight Envelope
		20.3.11. Computer Code: Determining Maximum Level Airspeed, Vmax, for a Propeller Aircraft
		20.3.12. Computer Code: Determining Maximum Level Airspeed, Vmax, for a Jet
	20.4. General Analysis Methods for Accelerated Flight
		20.4.1. Analysis of a General Level Constant Velocity Turn
		20.4.2. Extremes of Constant Velocity Turns
		20.4.3. Analysis of the Loop Maneuver
		20.4.4. Energy State
	References
Chapter 21: Performance-Range and Endurance
	21.1. Introduction
		21.1.1. The Content of This Chapter
		21.1.2. What Analyses Must I Do?
	21.2. Fundamental Relations for Range and Endurance
		21.2.1. General Equations-of-Motion for Range and Endurance
		21.2.2. Fundamentals of Range and Endurance of Fossil-Fueled Aircraft
		21.2.3. Fundamentals of Range and Endurance for Electric Aircraft
		21.2.4. Specific Fuel Consumption
	21.3. Range Analysis
		21.3.1. Mission Profiles
		21.3.2. Range Profile 1: Constant Airspeed/Altitude Cruise
		21.3.3. Range Profile 2: Constant Attitude/Altitude Cruise
		21.3.4. Range Profile 3: Constant Airspeed/Attitude Cruise
		21.3.5. Range Profile 4: Cruise Range of Electric Aircraft
		21.3.6. Specific Range
		21.3.7. Determining Fuel Required for a Mission
		21.3.8. Range Sensitivity Studies
	21.4. Endurance Analysis
		21.4.1. Endurance Profile 1: Constant Airspeed/Altitude Cruise
		21.4.2. Endurance Profile 2: Constant Attitude/Altitude Cruise
		21.4.3. Endurance Profile 3: Constant Airspeed/Attitude Cruise
		21.4.4. Endurance Profile 4: Cruise Range of Electric Aircraft
	21.5. Analysis of Mission Profile
		21.5.1. Basics of Mission Profile Analysis
		21.5.2. Special Range Mission 1: IFR Cruise Mission
		21.5.3. Special Range Mission 2: NBAA Cruise Mission
		21.5.4. Payload-Range Sensitivity Study
	Exercises
	References
Chapter 22: Performance-Descent
	22.1. Introduction
		22.1.1. The Content of This Chapter
		22.1.2. What Analyses Must I Do?
	22.2. Fundamental Relations for the Descent Maneuver
		22.2.1. General Equations-of-Motion for Descent
	22.3. General Descent Analysis Methods
		22.3.1. General Angle-of-Descent
		22.3.2. General Rate-of-Descent
		22.3.3. Equilibrium Glide Speed
		22.3.4. Sink Rate
		22.3.5. Airspeed of Minimum Sink Rate, VBA
		22.3.6. Minimum Angle of Descent
		22.3.7. Best Glide Speed, VBG
		22.3.8. Glide Distance
	22.4. Sailplane Glide Performance
		22.4.1. Sailplane Fundamentals
		22.4.2. Sailplane Glide Performance
		22.4.3. The Speed Polar
		22.4.4. Speeds-to-Fly
		22.4.5. Circling Flight
	References
Chapter 23: Performance-Landing
	23.1. Introduction
		23.1.1. The Content of This Chapter
		23.1.2. What Analyses Must I Do?
		23.1.3. Important Segments of the Landing Phase
	23.2. Fundamental Relations for the Landing Phase
		23.2.1. General Free-Body Diagram of the Landing Ground Run
		23.2.2. The Equation-of-Motion for the Landing Ground Run
		23.2.3. Formulation of Required Aerodynamic Forces
		23.2.4. Ground Roll Friction Coefficients
		23.2.5. Determination of the Approach Distance, SA
		23.2.6. Determination of the Flare Distance, SF
		23.2.7. Determination of the Free-Roll Distance, SFR
		23.2.8. Determination of the Braking Distance, SBR
		23.2.9. Landing Distance Sensitivity Studies
		23.2.10. COMPUTER CODE: Estimation of Landing Performance
	23.3. Database-Landing Performance of Selected Aircraft
	References
Chapter 24: Longitudinal Stability and Control
	24.1. Introduction
		24.1.1. The Content of This Chapter
		24.1.2. Coordinate Systems for Stability and Control
		24.1.3. Coordinate Transformation Matrices
		24.1.4. The Rigid Body Equations-of-Motion
		24.1.5. Formulation of Forces and Moments
		24.1.6. Basics of Aircraft Control
		24.1.7. Basic Aircraft Geometry for Longitudinal Stability and Control
		24.1.8. Important Note to the Reader
	24.2. Static Longitudinal Stability and Control
		24.2.1. Equations-of-Motion for Static Longitudinal Stability
		24.2.2. Requirements for Static Longitudinal Stability
		24.2.3. Historical Values of CMα
		24.2.4. The Thrust Model, CT
		24.2.5. The Lift Model, CL
		24.2.6. The Drag Model, CD
		24.2.7. The Pitching Moment Model, CM
		24.2.8. Horizontal Tail Downwash Angle and Angle-of-Attack
		24.2.9. Tail Efficiency Factor, ηHT
		24.2.10. Forces and Moments due to Fuselage and Nacelles
		24.2.11. Contribution of Thrust-Moment due to Offset Thrustline and Normal Force
		24.2.12. Contribution of the Landing Gear
		24.2.13. Compressibility Effect on Pitching Moment
	24.3. Refined Horizontal Tail Sizing
		24.3.1. Fundamentals of Pitch Control
		24.3.2. Roadmap to Sizing the Horizontal Tail and Elevator
		24.3.3. Longitudinal Stability of a Simple Wing-HT-Engine System
		24.3.4. The Stick-Fixed Neutral Point (Aerodynamic Center)
		24.3.5. Trimming for Steady Level Flight
		24.3.6. A Simplified Theory of V-Tails
	24.4. Introduction to Hinge Moments
		24.4.1. Fundamental Definitions
		24.4.2. Introduction to Control System Loads and Gain
		24.4.3. Trim Tabs
		24.4.4. Control Horns
	References
Chapter 25: LAT-DIR Stability and Control
	25.1. Introduction
		25.1.1. The Content of This Chapter
		25.1.2. Basic Aircraft Geometry for Lateral and Directional Stability
	25.2. Lateral-Directional Stability and Control
		25.2.1. Basic Definitions
		25.2.2. Equations-of-Motion for Static Lateral-Directional Stability
		25.2.3. Requirements for Directional Stability
		25.2.4. Requirements for Lateral Stability
		25.2.5. Historical Values of CLβ and CNβ
	25.3. Directional Stability and Control
		25.3.1. The Side-Force Model, CYβ
		25.3.2. The Yawing Moment Model, CN
	25.4. Lateral Stability and Control
		25.4.1. Important Contributions to Rolling Moment
		25.4.2. The Rolling Moment Model, CL
	25.5. Basics of Roll and Yaw Control
		25.5.1. Fundamentals of Roll Control
		25.5.2. Aileron Sizing
		25.5.3. Fundamentals of Yaw Control
	References
Chapter 26: Miscellaneous Design Notes
	26.1. Introduction
		26.1.1. The Content of This Chapter
	26.2. General Aviation Aircraft Design Checklist
		26.2.1. Control System Stretching
		26.2.2. Crosswind Capability at Touch-Down
		26.2.3. Balked Landing Capability
		26.2.4. Take-Off Rotation Capability
		26.2.5. Stall Characteristics
		26.2.6. Trim at Stall and Flare at Landing
		26.2.7. Horizontal Tail Stall
		26.2.8. Roll Authority
		26.2.9. Control System Harmony
		26.2.10. Climb Capability
		26.2.11. One-Engine-Inoperative Trim and Climb Capability
		26.2.12. Natural Damping Capability
		26.2.13. Miscellaneous Topics
	26.3. Faults and Fixes
		26.3.1. Stability and Control
		26.3.2. Stall Handling
		26.3.3. Flow Improvements
	References
Appendix A: Atmospheric Modeling
	A.1. Introduction
		A.1.1. General Information About the Atmosphere
		A.1.2. Chemical Composition of Standard Air
		A.1.3. Layer Classification of the Atmosphere
	A.2. Modeling Atmospheric Properties
		A.2.1. Atmospheric Ambient Temperature
		A.2.2. Atmospheric Pressure and Density for Altitudes Below 36,089ft (11,000m)
		A.2.3. Density due to Temperature Deviations From the Standard Atmosphere
		A.2.4. Pressure and Density Altitudes Below 36,089ft (11,000m)
		A.2.5. The US Standard Atmosphere 1976
		A.2.6. Computer Code: Atmospheric Modeling
	Reference
Appendix B: The Aerospace Engineers Formula Sheet
	B.1. Cost Analysis
	B.2. Constraint Analysis
	B.3. Weight Analysis
	B.4. Power Plant
	B.5. Wing Planform
	B.6. Tail Sizing
	B.7. Lift and Drag
	B.8. The Propeller
	B.9. The Atmosphere
	B.10. Airspeeds
	B.11. Take-Off
	B.12. Climb, Cruise, and Maneuvering Flight
	B.13. Range and Endurance
Appendix C: Design of Biplanes and Seaplanes
	C.1. Conceptual Design of Biplanes
		C.1.1. Nomenclature for Biplanes
		C.1.2. Various Effects That Apply to Biplanes Only
		C.1.3. Aerodynamic Properties of the Biplane Configuration
	C.2. Conceptual Design of Seaplanes
		C.2.1. Basics of Seaplane Hydrodynamics
		C.2.2. Seaplane Design Tips
		C.2.3. Seaplane Take-Off Estimation
		C.2.4. 14 CFR Part 23 Regulations for Seaplanes
	References
Appendix D: Derivation of Landing Side-Constraint
Index
Back Cover




نظرات کاربران