دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2nd edition
نویسندگان: Cox. David A
سری: Pure and applied mathematics (John Wiley & Sons. Unnumbered)
ISBN (شابک) : 9781118072059, 1118072057
ناشر: Wiley.
سال نشر: 2012
تعداد صفحات: 603
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 24 مگابایت
کلمات کلیدی مربوط به کتاب نظریه گالوا: گالوا، نظریه، نظریه گالوا، گالوا، نظریه
در صورت تبدیل فایل کتاب Galois theory به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب نظریه گالوا نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface to the First Edition xvii Preface to the Second Edition xxi Notation xxiii 1 Basic Notation xxiii 2 Chapter-by-Chapter Notation xxv PART I POLYNOMIALS 1 Cubic Equations 3 1.1 Cardan's Formulas 4 1.2 Permutations of the Roots 10 1.3 Cubic Equations over the Real Numbers 15 2 Symmetric Polynomials 25 2.1 Polynomials of Several Variables 25 2.2 Symmetric Polynomials 30 2.3 Computing with Symmetric Polynomials (Optional) 42 2.4 The Discriminant 46 3 Roots of Polynomials 55 3.1 The Existence of Roots 55 3.2 The Fundamental Theorem of Algebra 62 PART II FIELDS 4 Extension Fields 73 4.1 Elements of Extension Fields 73 4.2 Irreducible Polynomials 81 4.3 The Degree of an Extension 89 4.4 Algebraic Extensions 95 5 Normal and Separable Extensions 101 5.1 Splitting Fields 101 5.2 Normal Extensions 107 5.3 Separable Extensions 109 5.4 Theorem of the Primitive Element 119 6 The Galois Group 125 6.1 Definition of the Galois Group 125 6.2 Galois Groups of Splitting Fields 130 6.3 Permutations of the Roots 132 6.4 Examples of Galois Groups 136 6.5 Abelian Equations (Optional) 143 7 The Galois Correspondence 147 7.1 Galois Extensions 147 7.2 Normal Subgroups and Normal Extensions 154 7.3 The Fundamental Theorem of Galois Theory 161 7.4 First Applications 167 7.5 Automorphisms and Geometry (Optional) 173 PART III APPLICATIONS 8 Solvability by Radicals 191 8.1 Solvable Groups 191 8.2 Radical and Solvable Extensions 196 8.3 Solvable Extensions and Solvable Groups 201 8.4 Simple Groups 210 8.5 Solving Polynomials by Radicals 215 8.6 The Casus Irreducbilis (Optional) 220 9 Cyclotomic Extensions 229 9.1 Cyclotomic Polynomials 229 9.2 Gauss and Roots of Unity (Optional) 238 10 Geometric Constructions 255 10.1 Constructible Numbers 255 10.2 Regular Polygons and Roots of Unity 270 10.3 Origami (Optional) 274 11 Finite Fields 291 11.1 The Structure of Finite Fields 291 11.2 Irreducible Polynomials over Finite Fields (Optional) 301 PART IV FURTHER TOPICS 12 Lagrange, Galois, and Kronecker 315 12.1 Lagrange 315 12.2 Galois 334 12.3 Kronecker 347 13 Computing Galois Groups 357 13.1 Quartic Polynomials 357 13.2 Quintic Polynomials 368 13.3 Resolvents 386 13.4 Other Methods 400 14 Solvable Permutation Groups 413 14.1 Polynomials of Prime Degree 413 14.2 Imprimitive Polynomials of Prime-Squared Degree 419 14.3 Primitive Permutation Groups 429 14.4 Primitive Polynomials of Prime-Squared Degree 444 15 The Lemniscate 463 15.1 Division Points and Arc Length 464 15.2 The Lemniscatic Function 470 15.3 The Complex Lemniscatic Function 482 15.4 Complex Multiplication 489 15.5 Abel's Theorem 504 A Abstract Algebra 515 A.1 Basic Algebra 515 A.2 Complex Numbers 524 A.3 Polynomials with Rational Coefficients 528 A.4 Group Actions 530 A.5 More Algebra 532 Index 557