دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Sachi Nandan Mohanty, Prasenjit Chatterjee, Bui Thanh Hung سری: Sustainable Computing and Optimization ISBN (شابک) : 1119864925, 9781119864929 ناشر: Wiley-Scrivener سال نشر: 2022 تعداد صفحات: 361 [363] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 20 Mb
در صورت تبدیل فایل کتاب Fuzzy Computing in Data Science: Applications and Challenges به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب محاسبات فازی در علم داده: کاربردها و چالش ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب به طور جامع نحوه استفاده از مدلهای مختلف مبتنی بر فازی را برای حل چالشهای صنعتی بلادرنگ توضیح میدهد.
< span> این کتاب اطلاعاتی در مورد جنبه های اساسی این رشته ارائه می دهد و کاربردهای بی شمار تکنیک ها و روش های منطق فازی را بررسی می کند. ملاحظات مفهومی اساسی و مطالعات موردی کاربردهای محاسبات فازی را ارائه میکند. مفاهیم و تکنیک های اساسی برای مدل سازی سیستم، پردازش اطلاعات، طراحی سیستم هوشمند، تجزیه و تحلیل تصمیم گیری، تجزیه و تحلیل آماری، تشخیص الگو، یادگیری خودکار، کنترل سیستم و شناسایی را پوشش می دهد. این کتاب همچنین ترکیب تکنیکهای محاسبات فازی را با سایر رویکردهای هوش محاسباتی مانند محاسبات عصبی و تکاملی مورد بحث قرار میدهد.
مخاطبان
محققان و دانشجویان در علوم کامپیوتر، هوش مصنوعی، یادگیری ماشین، تجزیه و تحلیل دادههای بزرگ، و اطلاعات و ارتباطات تکنولوژی.
This book comprehensively explains how to use various fuzzy-based models to solve real-time industrial challenges.
The book provides information about fundamental aspects of the field and explores the myriad applications of fuzzy logic techniques and methods. It presents basic conceptual considerations and case studies of applications of fuzzy computation. It covers the fundamental concepts and techniques for system modeling, information processing, intelligent system design, decision analysis, statistical analysis, pattern recognition, automated learning, system control, and identification. The book also discusses the combination of fuzzy computation techniques with other computational intelligence approaches such as neural and evolutionary computation.
Audience
Researchers and students in computer science, artificial intelligence, machine learning, big data analytics, and information and communication technology.
Cover Title Page Copyright Page Dedication Page Contents Preface Acknowledgement Chapter 1 Band Reduction of HSI Segmentation Using FCM 1.1 Introduction 1.2 Existing Method 1.2.1 K-Means Clustering Method 1.2.2 Fuzzy C-Means 1.2.3 Davies Bouldin Index 1.2.4 Data Set Description of HSI 1.3 Proposed Method 1.3.1 Hyperspectral Image Segmentation Using Enhanced Estimation of Centroid 1.3.2 Band Reduction Using K-Means Algorithm 1.3.3 Band Reduction Using Fuzzy C-Means 1.4 Experimental Results 1.4.1 DB Index Graph 1.4.2 K-Means–Based PSC (EEOC) 1.4.3 Fuzzy C-Means–Based PSC (EEOC) 1.5 Analysis of Results 1.6 Conclusions References Chapter 2 A Fuzzy Approach to Face Mask Detection 2.1 Introduction 2.2 Existing Work 2.3 The Proposed Framework 2.4 Set-Up and Libraries Used 2.5 Implementation 2.6 Results and Analysis 2.7 Conclusion and Future Work References Chapter 3 Application of Fuzzy Logic to the Healthcare Industry 3.1 Introduction 3.2 Background 3.3 Fuzzy Logic 3.4 Fuzzy Logic in Healthcare 3.5 Conclusions References Chapter 4 A Bibliometric Approach and Systematic Exploration of Global Research Activity on Fuzzy Logic in Scopus Database 4.1 Introduction 4.2 Data Extraction and Interpretation 4.3 Results and Discussion 4.3.1 Per Year Publication and Citation Count 4.3.2 Prominent Affiliations Contributing Toward Fuzzy Logic 4.3.3 Top Journals Emerging in Fuzzy Logic in Major Subject Areas 4.3.4 Major Contributing Countries Toward Fuzzy Research Articles 4.3.5 Prominent Authors Contribution Toward the Fuzzy Logic Analysis 4.3.6 Coauthorship of Authors 4.3.7 Cocitation Analysis of Cited Authors 4.3.8 Cooccurrence of Author Keywords 4.4 Bibliographic Coupling of Documents, Sources, Authors, and Countries 4.4.1 Bibliographic Coupling of Documents 4.4.2 Bibliographic Coupling of Sources 4.4.3 Bibliographic Coupling of Authors 4.4.4 Bibliographic Coupling of Countries 4.5 Conclusion References Chapter 5 Fuzzy Decision Making in Predictive Analytics and Resource Scheduling 5.1 Introduction 5.2 History of Fuzzy Logic and Its Applications 5.3 Approximate Reasoning 5.4 Fuzzy Sets vs Classical Sets 5.5 Fuzzy Inference System 5.5.1 Characteristics of FIS 5.5.2 Working of FIS 5.5.3 Methods of FIS 5.6 Fuzzy Decision Trees 5.6.1 Characteristics of Decision Trees 5.6.2 Construction of Fuzzy Decision Trees 5.7 Fuzzy Logic as Applied to Resource Scheduling in a Cloud Environment 5.8 Conclusion References Chapter 6 Application of Fuzzy Logic and Machine Learning Concept in Sales Data Forecasting Decision Analytics Using ARIMA Model 6.1 Introduction 6.1.1 Aim and Scope 6.1.2 R-Tool 6.1.3 Application of Fuzzy Logic 6.1.4 Dataset 6.2 Model Study 6.2.1 Introduction to Machine Learning Method 6.2.2 Time Series Analysis 6.2.3 Components of a Time Series 6.2.4 Concepts of Stationary 6.2.5 Model Parsimony 6.3 Methodology 6.3.1 Exploratory Data Analysis 6.3.1.1 Seed Types—Analysis 6.3.1.2 Comparison of Location and Seeds 6.3.1.3 Comparison of Season (Month) and Seeds 6.3.2 Forecasting 6.3.2.1 Auto Regressive Integrated Moving Average (ARIMA) 6.3.2.2 Data Visualization 6.3.2.3 Implementation Model 6.4 Result Analysis 6.5 Conclusion References Chapter 7 Modified m-Polar Fuzzy Set ELECTRE-I Approach 7.1 Introduction 7.1.1 Objectives 7.2 Implementation of m-Polar Fuzzy ELECTRE-I Integrated Shannon’s Entropy Weight Calculations 7.2.1 The m-Polar Fuzzy ELECTRE-I Integrated Shannon’s Entropy Weight Calculation Method 7.3 Application to Industrial Problems 7.3.1 Cutting Fluid Selection Problem 7.3.2 Results Obtained From m-Polar Fuzzy ELECTRE-I for Cutting Fluid Selection Problem 7.3.3 FMS Selection Problem 7.3.4 Results Obtained From m-Polar Fuzzy ELECTRE-I for FMS Selection 7.4 Conclusions References Chapter 8 Fuzzy Decision Making: Concept and Models 8.1 Introduction 8.2 Classical Set 8.3 Fuzzy Set 8.4 Properties of Fuzzy Set 8.5 Types of Decision Making 8.5.1 Individual Decision Making 8.5.2 Multiperson Decision Making 8.5.3 Multistage Decision Making 8.5.4 Multicriteria Decision Making 8.6 Methods of Multiattribute Decision Making (MADM) 8.6.1 Weighted Sum Method (WSM) 8.6.2 Weighted Product Method (WPM) 8.6.3 Weighted Aggregates Sum Product Assessment (WASPAS) 8.6.4 Technique for Order Preference by Similarity to Ideal Solutions (TOPSIS) 8.7 Applications of Fuzzy Logic 8.8 Conclusion References Chapter 9 Use of Fuzzy Logic for Psychological Support to Migrant Workers of Southern Odisha (India) 9.1 Introduction 9.2 Objectives and Methodology 9.2.1 Objectives 9.2.2 Methodology 9.3 Effect of COVID-19 on the Psychology and Emotion of Repatriated Migrants 9.3.1 Psychological Variables Identified 9.3.2 Fuzzy Logic for Solace to Migrants 9.4 Findings 9.5 Way Out for Strengthening the Psychological Strength of the Migrant Workers through Technological Aid 9.6 Conclusion References Chapter 10 Fuzzy-Based Edge AI Approach: Smart Transformation of Healthcare for a Better Tomorrow 10.1 Significance of Machine Learning in Healthcare 10.2 Cloud-Based Artificial Intelligent Secure Models 10.3 Applications and Usage of Machine Learning in Healthcare 10.3.1 Detecting Diseases and Diagnosis 10.3.2 Drug Detection and Manufacturing 10.3.3 Medical Imaging Analysis and Diagnosis 10.3.4 Personalized/Adapted Medicine 10.3.5 Behavioral Modification 10.3.6 Maintenance of Smart Health Data 10.3.7 Clinical Trial and Study 10.3.8 Crowdsourced Information Discovery 10.3.9 Enhanced Radiotherapy 10.3.10 Outbreak/Epidemic Prediction 10.4 Edge AI: For Smart Transformation of Healthcare 10.4.1 Role of Edge in Reshaping Healthcare 10.4.2 How AI Powers the Edge 10.5 Edge AI-Modernizing Human Machine Interface 10.5.1 Rural Medicine 10.5.2 Autonomous Monitoring of Hospital Rooms—A Case Study 10.6 Significance of Fuzzy in Healthcare 10.6.1 Fuzzy Logic—Outline 10.6.2 Fuzzy Logic-Based Smart Healthcare 10.6.3 Medical Diagnosis Using Fuzzy Logic for Decision Support Systems 10.6.4 Applications of Fuzzy Logic in Healthcare 10.7 Conclusion and Discussions References Chapter 11 Video Conferencing (VC) Software Selection Using Fuzzy TOPSIS 11.1 Introduction 11.2 Video Conferencing Software and Its Major Features 11.2.1 Video Conferencing/Meeting Software (VC/MS) for Higher Education Institutes 11.3 Fuzzy TOPSIS 11.3.1 Extension of TOPSIS Algorithm: Fuzzy TOPSIS 11.4 Sample Numerical Illustration 11.5 Conclusions References Chapter 12 Estimation of Nonperforming Assets of Indian Commercial Banks Using Fuzzy AHP and Goal Programming 12.1 Introduction 12.1.1 Basic Concepts of Fuzzy AHP and Goal Programming 12.2 Research Model 12.2.1 Average Growth Rate Calculation 12.3 Result and Discussion 12.4 Conclusion References Chapter 13 Evaluation of Ergonomic Design for the Visual Display Terminal Operator at Static Work Under FMCDM Environment 13.1 Introduction 13.2 Proposed Algorithm 13.3 An Illustrative Example on Ergonomic Design Evaluation 13.4 Conclusions References Chapter 14 Optimization of Energy Generated from Ocean Wave Energy Using Fuzzy Logic 14.1 Introduction 14.2 Control Approach in Wave Energy Systems 14.3 Related Work 14.4 Mathematical Modeling for Energy Conversion from Ocean Waves 14.5 Proposed Methodology 14.5.1 Wave Parameters 14.5.2 Fuzzy-Optimizer 14.6 Conclusion References Chapter 15 The m-Polar Fuzzy TOPSIS Method for NTM Selection 15.1 Introduction 15.2 Literature Review 15.3 Methodology 15.3.1 Steps of the mFS TOPSIS 15.4 Case Study 15.4.1 Effect of Analytical Hierarchy Process (AHP) Weight Calculation on the mFS TOPSIS Method 15.4.2 Effect of Shannon’s Entropy Weight Calculation on the m-Polar Fuzzy Set TOPSIS Method 15.5 Results and Discussions 15.5.1 Result Validation 15.6 Conclusions and Future Scope References Chapter 16 Comparative Analysis on Material Handling Device Selection Using Hybrid FMCDM Methodology 16.1 Introduction 16.2 MCDM Techniques 16.2.1 FAHP 16.2.2 Entropy Method as Weights (Influence) Evaluation Technique 16.3 The Proposed Hybrid and Super Hybrid FMCDM Approaches 16.3.1 TOPSIS 16.3.2 FMOORA Method 16.3.3 FVIKOR 16.3.4 Fuzzy Grey Theory (FGT) 16.3.5 COPRAS –G 16.3.6 Super Hybrid Algorithm 16.4 Illustrative Example 16.5 Results and Discussions 16.5.1 FTOPSIS 16.5.2 FMOORA 16.5.3 FVIKOR 16.5.4 Fuzzy Grey Theory (FGT) 16.5.5 COPRAS-G 16.5.6 Super Hybrid Approach (SHA) 16.6 Conclusions References Chapter 17 Fuzzy MCDM on CCPM for Decision Making: A Case Study 17.1 Introduction 17.2 Literature Review 17.3 Objective of Research 17.4 Cluster Analysis 17.4.1 Hierarchical Clustering 17.4.2 Partitional Clustering 17.5 Clustering 17.6 Methodology 17.7 TOPSIS Method 17.8 Fuzzy TOPSIS Method 17.9 Conclusion 17.10 Scope of Future Study References Index EULA