ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Future Energy: Improved, Sustainable and Clean Options for Our Planet

دانلود کتاب انرژی آینده: گزینه های بهبود یافته ، پایدار و پاک برای سیاره ما

Future Energy: Improved, Sustainable and Clean Options for Our Planet

مشخصات کتاب

Future Energy: Improved, Sustainable and Clean Options for Our Planet

ویرایش: 3 
نویسندگان:   
سری:  
ISBN (شابک) : 0081028865, 9780081028865 
ناشر: Elsevier Science Ltd 
سال نشر: 2020 
تعداد صفحات: 776 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 18 مگابایت 

قیمت کتاب (تومان) : 37,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Future Energy: Improved, Sustainable and Clean Options for Our Planet به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب انرژی آینده: گزینه های بهبود یافته ، پایدار و پاک برای سیاره ما نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب انرژی آینده: گزینه های بهبود یافته ، پایدار و پاک برای سیاره ما



انرژی آینده: گزینه های بهبود یافته، پایدار و پاک برای سیاره ما، نسخه سوم دانشی را در اختیار دانشمندان و تصمیم گیرندگان قرار می دهد تا اهمیت نسبی و بزرگی روش های مختلف تولید انرژی را درک کنند. اتخاذ تصمیمات انرژی لازم برای توسعه پایدار و مقابله با تغییرات آب و هوایی. ویرایش سوم Future Energy به وضعیت فعلی انرژی می پردازد و سناریوهای آینده مربوط به گرم شدن کره زمین و افزایش دی اکسید کربن و سایر گازهای گلخانه ای در جو را تعمیم می دهد.

این نسخه کاملاً اصلاح شده و به روز شده شامل بیش از 40 فصل در مورد تمام جنبه های انرژی آینده است که هر فصل توسط دانشمندان و مهندسان متخصص در زمینه های مربوطه به روز شده و گسترش یافته است.

  • یک مرور کلی به روز از گزینه های انرژی موجود، چه سنتی و چه تجدیدپذیر، و همچنین ابزارهای لازم برای تصمیم گیری آگاهانه را در اختیار خوانندگان قرار می دهد
  • طیف گسترده ای از منابع انرژی آینده ارائه شده در یک واحد را پوشش می دهد. کتاب با فصول نوشته شده توسط متخصصان هر حوزه خاص
  • شامل بسیاری از فصول جدید است که موضوعاتی در مورد نفت متعارف و سوخت های فسیلی، بخش جدیدی در ذخیره انرژی و نگاهی به انرژی های جدید را پوشش می دهد
  • </ ul>

توضیحاتی درمورد کتاب به خارجی

Future Energy: Improved, Sustainable and Clean Options for Our Planet, Third Edition provides scientists and decision-makers with the knowledge they need to understand the relative importance and magnitude of various energy production methods in order to make the energy decisions necessary for sustaining development and dealing with climate change. The third edition of Future Energy looks at the present energy situation and extrapolates to future scenarios related to global warming and the increase of carbon dioxide and other greenhouse gases in the atmosphere.

This thoroughly revised and updated edition contains over 40 chapters on all aspects of future energy, with each chapter updated and expanded by expert scientists and engineers in their respective fields.

  • Provides readers with an up-to-date overview of available energy options, both traditional and renewable, as well as the necessary tools needed to make informed decisions
  • Covers a wide spectrum of future energy resources presented in a single book with chapters written by experts from each particular field
  • Includes many new chapters that cover topics on conventional oil and fossil fuels, a new section on energy storage, and a look at new energy


فهرست مطالب

Cover
Future Energy: Improved, Sustainable and Clean Options for our Planet
Copyright
Dedication
List of Contributors
Preface
Part 1: Introduction
1. Introduction With a Focus on Atmospheric Carbon Dioxide and Climate Change
	1.1 Introduction
	1.2 Why is it important to consider our future energy options?
		1.2.1 Society\'s needs
		1.2.2 The need for a sustainable, safe, and nonpolluting energy source
		1.2.3 Climate change
	1.3 Atmospheric pollution and climate change
	1.4 What are our options for electricity generation?
	1.5 What are our options for transport fuel?
	1.6 Thermodynamics and sustainable energy
	1.7 The energy situation in the world today
	1.8 How can we reduce the stranglehold of fossil fuels?
	References
Part 2: Fossil Fuels (Energy Sources)
2. Coal: Past, Present, and Future Sustainable Use
	2.1 Introduction
		2.1.1 Coal reserves and distribution
		2.1.2 Current extraction trend and use
	2.2 Coal classification and characterization
		2.2.1 Coal classification
		2.2.2 Coal characterization/properties
	2.3 Issues with coal utilization
		2.3.1 Operational issues
		2.3.2 Environmental issues
			2.3.2.1 Gaseous emission
			2.3.2.2 Particulates and trace/toxic elements emission
			2.3.2.3 Greenhouse gas emissions
			2.3.2.4 Wastewater
			2.3.2.5 Solid waste
	2.4 Clean coal technologies
		2.4.1 Pre-combustion coal upgrading
			2.4.1.1 Wet beneficiation/coal washing
			2.4.1.2 Dry beneficiation
			2.4.1.3 Drying of lignites and sub-bituminous coal
			2.4.1.4 Preparation of ultra clean coal
		2.4.2 Advanced combustion/gasification technologies
			2.4.2.1 Integrated gasification combined cycle
		2.4.3 Post-combustion cleaning
			2.4.3.1 Gaseous emission (NOx, SOx) control
			2.4.3.2 Particle and trace elements emission control
		2.4.4 Carbon capture and storage
			2.4.4.1 Pre-combustion capture
			2.4.4.2 Oxy-firing
			2.4.4.3 Chemical looping combustion
			2.4.4.4 Post-combustion capture
			2.4.4.5 Current status of carbon capture and storage
				2.4.4.5.1 Sask power, boundary dam, Canada
				2.4.4.5.2 Petra nova CCS, houston, USA
				2.4.4.5.3 Kemper County, Mississippi, USA
	2.5 Sustainable coal use and future directions
		2.5.1 Future projections
		2.5.2 Technologies for sustainable coal utilization
	2.6 Summary
	References
3. Unconventional Oil: Oilsands
	3.1 Introduction
	3.2 Occurrence of oilsands deposits
	3.3 Physical and chemical properties of oilsands bitumen
	3.4 Bitumen production from oilsands
		3.4.1 Extraction of mined oilsands
		3.4.2 Subsurface production of oilsands
	3.5 Bitumen transport by pipeline
	3.6 Bitumen upgrading and refining
	3.7 Bitumen upgrader facilities
	3.8 Environmental footprint of oilsands production
	3.9 Future of oilsands
	References
4. Shale Gas, Tight Oil, Shale Oil and Hydraulic Fracturing
	4.1 Introduction
	4.2 Hydrocarbons in low-permeability (tight) rocks
	4.3 Unconventional oil and gas
		4.3.1 Potential resources
			4.3.1.1 Shale gas
			4.3.1.2 Tight oil
		4.3.2 Extraction methods
			4.3.2.1 Horizontal drilling
			4.3.2.2 Hydraulic fracturing
			4.3.2.3 Microseismic monitoring
			4.3.2.4 Environmental concerns
			4.3.2.5 Induced seismicity
		4.3.3 Future production of mudstone-hosted hydrocarbons
			4.3.3.1 Shale gas
			4.3.3.2 Tight oil
	4.4 Oil shale
		4.4.1 Potential resources
		4.4.2 Extraction methods
			4.4.2.1 Mining and surface processing
			4.4.2.2 In situ retorting
			4.4.2.3 In-capsule retorting
			4.4.2.4 Environmental concerns
		4.4.3 Future production of shale oil
	4.5 Conclusions
	References
5. Coalbed Methane: Reserves, Production, and Future Outlook
	5.1 Introduction
	5.2 Properties and origin of coalbed methane
	5.3 Coalbed methane availability and production
	5.4 Drilling and extraction techniques
	5.5 Environmental issues of CBM extraction
	5.6 Future outlook
	References
6. Natural Gas Hydrates: Status of Potential as an Energy Resource
	6.1 Introduction
	6.2 Gas hydrate occurrence types
	6.3 Gas hydrate resource volumes
	6.4 Gas hydrate exploration
	6.5 Gas hydrate reservoir characterization
	6.6 Gas hydrate geologic systems
	6.7 Gas hydrate production technology
	6.8 Gas hydrate production challenges
	6.9 Conclusions
	References
Part 3: Nuclear Power (Energy Sources)
7. Nuclear Fission
	7.1 Introduction
		7.1.1 Nuclear fuel
		7.1.2 Nuclear fission
		7.1.3 Controlled fission reactions
	7.2 Nuclear reactor technology
		7.2.1 Development of nuclear reactors
		7.2.2 The past
		7.2.3 The present
		7.2.4 Advanced reactor technology
			7.2.4.1 Very high temperature reactor
			7.2.4.2 Liquid metal-cooled fast reactor
			7.2.4.3 Gas-cooled fast reactor
			7.2.4.4 Molten salt reactor
			7.2.4.5 Supercritical water-cooled reactor
	7.3 Managing irradiated fuel
		7.3.1 Open and closed fuel cycles
		7.3.2 Advantages and disadvantages of open and closed fuel cycles
		7.3.3 Current status of fuel cycles
	7.4 Thorium as an alternative fuel
		7.4.1 Properties of thorium
		7.4.2 Potential of thorium fuels
	7.5 Practicalities of nuclear energy
		7.5.1 Practicalities
		7.5.2 Safety
		7.5.3 Waste management
		7.5.4 Siting and public acceptance
		7.5.5 Fuel supply
		7.5.6 Proliferation
	7.6 Conclusions
	References
8. Small Modular Nuclear Reactors
	8.1 Introduction
	8.2 Economics and financing of SMRs
		8.2.1 Introduction to the economic evaluation of nuclear power plants
		8.2.2 Modularization
		8.2.3 Co-siting economies
		8.2.4 Learning and construction schedule
			Modularity—learning economies
			Mass production economies
			Fixed daily cost
			The postponing of cash inflow
		8.2.5 Life-cycle costs
			8.2.5.1 Capital cost
			8.2.5.2 Operating expenditure
			8.2.5.3 Decommissioning cost
		8.2.6 Small modular reactor financing
	8.3 External factors
		8.3.1 Regulation
			Regulatory harmonization and international certification
			Duration and predictability of the licensing process
			Manufacturing license
			The need for a new and regulatory framework
		8.3.2 Electric grid characteristics/market dimension
		8.3.3 Public acceptance
		8.3.4 Safety and security
		8.3.5 Emergency planning zone
		8.3.6 Cogeneration
	8.4 Why has nobody built SMRs in the last twodecades? And the way forward
	References
Part 4: Transport Energy (Energy Sources)
9. Biofuels for Transport
	9.1 Introduction
	9.2 Biofuels current and prospective status
	9.3 Biofuel use in transport: possibilities and constraints
		9.3.1 Biofuels for otto cycle engines
		9.3.2 Biofuels for diesel cycle engines and gas turbines
		9.3.3 Innovative technologies for biofuels use in transport
	9.4 Biofuels production: context and advances in sugarcane bioenergy
		9.4.1 Diversification and flexibility: basis for feasibility of sugarcane bioenergy
			9.4.1.1 Flexibility and diversity in bioenergy production
			9.4.1.2 Flexibility and diversity in bioenergy marketing
			9.4.1.3 Flexibility and diversity in bioenergy use
	9.5 Sustainability challenges: concepts and achievements
		9.5.1 Assessing biofuels sustainability
	9.6 The ethical principles of biofuels
	9.7 Final remarks and conclusions
	References
10. Transport Fuel: Biomass-, Coal-, Gas- and Waste-to-Liquids Processes
	10.1 Introduction
	10.2 Overview of alternative carbon feed-to-liquid (XTL) processes
		10.2.1 Overview of oil recovery by direct liquefaction
		10.2.2 Overview of oil production by indirect liquefaction
		10.2.3 Overview of transport fuel production by synthetic oil refining
	10.3 Direct liquefaction
		10.3.1 Thermochemical conversion principles
		10.3.2 Oil quality
		10.3.3 Refining to transport fuels
	10.4 Indirect liquefaction
		10.4.1 Synthesis gas from natural gas reforming
		10.4.2 Synthesis gas from biomass, coal and waste gasification
		10.4.3 Fischer–Tropsch synthesis
		10.4.4 Refining Fischer–Tropsch synthetic oil to transport fuels
		10.4.5 Methanol synthesis
		10.4.6 Refining methanol to transport fuels
	10.5 Environmental footprint of liquefaction
		10.5.1 Upstream environmental impact
		10.5.2 Downstream environmental impact
		10.5.3 Environmental impact of product use
	10.6 Future energy
	References
11. The Electric Vehicle Revolution
	11.1 Introduction
	11.2 Battery electric vehicles
	11.3 Hybrid electric vehicles
	11.4 Disruption of the automotive system
	11.5 Current EV market
	11.6 Urban electric vehicles
	11.7 Rural electric vehicles
	11.8 Disruption of the energy system
	11.9 How EVs impact on the generating system
	11.10 How EVs impact on the distribution system
	11.11 Smart grid solutions and new business models
	11.12 Conclusions
	References
Part 5: Energy Storage
12. The Use of Batteries in Storing Electricity
	12.1 Introduction
	12.2 Basics of lithium-ion batteries
	12.3 Development of lithium-ion battery systems
		12.3.1 Design of battery modules and systems for stationary applications
			12.3.1.1 Consideration of efficiencies
	12.4 Battery management systems
	12.5 System integration
		12.5.1 System topologies
			12.5.1.1 DC-coupled systems
			12.5.1.2 AC-coupled systems
			12.5.1.3 Generator-coupled systems
		12.5.2 Energy management
	12.6 Key factors affecting bankability and insurability of PV battery storage projects
	12.7 Conclusions
	References
13. The Use of Flow Batteries in Storing Electricity for National Grids
	13.1 Introduction and historic development
	13.2 Characteristics of flow batteries
	13.3 Cost and levelized cost of storage
		13.3.1 Investment costs
		13.2.2 Levelized cost of storage
	13.4 Applications and markets
	13.5 Current projects and latest plans
		13.5.1 Smart region Pellworm, Germany
		13.5.2 Solar pv plant in Qinghai, China
		13.5.3 San Bernardino county community center, US
		13.5.4 Minami-Hayakita substation, Hokkaido, Japan
	13.6 Redox flow battery suppliers
	References
14. Compressed-Air Energy Storage
	14.1 Introduction
	14.2 CAES attributes and power grid operation
		14.2.1 CAES attributes and ES technology comparison
		14.2.2 Suitable grid services for CAES
		14.2.3 CAES cost comparison with other ES technologies
	14.3 Types of CAES system
		14.3.1 Diabatic CAES
		14.3.2 Adiabatic CAES
			14.3.2.1 A-CAES without TES
			14.3.2.2 A-CAES with TES
		14.3.3 Isothermal CAES
		14.3.4 Liquid air energy storage
		14.3.5 Supercritical CAES
		14.3.6 Micro-CAES
		14.3.7 Underwater CAES
		14.3.8 Underground storage caverns
			14.3.8.1 Porous rock
			14.3.8.2 Hard rock
			14.3.8.3 Salt caverns
	14.4 CAES thermodynamic and exergy analysis
		14.4.1 Air compression, expansion, and assumptions
		14.4.2 Assumptions
		14.4.3 Energy analysis
			14.4.3.1 Energy and mass balance
			14.4.3.2 Air compressors
			14.4.3.3 Air expanders
			14.4.3.4 Heat exchangers
			14.4.3.5 Air storage reservoirs
			14.4.3.6 Heat storage reservoirs
		14.4.4 Exergy analysis
			14.4.4.1 Exergy in a flow stream
			14.4.4.2 Exergy balance
			14.4.4.3 Air compressors
			14.4.4.4 Air expanders
			14.4.4.5 Heat exchangers
			14.4.4.6 Air storage tanks
			14.4.4.7 Heat storage
			14.4.4.8 4.4.8 liquid pumps
			14.4.4.9 Throttling valves
		14.4.5 Energy and exergy flow examples
	14.5 Global storage capacity
		14.5.1 Methodology
		14.5.2 Results and discussion
	14.6 Future direction and challenges
		14.6.1 Roundtrip efficiency improvements
		14.6.2 Turbomachinery
		14.6.3 Integration with renewables and other ES technologies
		14.6.4 Small-scale CAES
		14.6.5 Storage cavern research
		14.6.6 Economics and government policy
	References
Part 6: Renewables (Energy Sources)
15. Hydroelectric Power
	15.1 Introduction
	15.2 Hydropower resources
		15.2.1 Definition of potential
		15.2.2 Global and regional overview
	15.3 Technology
		15.3.1 Run-of-river
		15.3.2 Storage hydro
		15.3.3 Pumped storage
		15.3.4 Hydrokinetic
		15.3.5 Underground power plants
		15.3.6 Large and small hydro
	15.4 Sustainability issues
		15.4.1 Life-cycle assessment
		15.4.2 Greenhouse gas emissions
		15.4.3 Energy payback ratio
		15.4.4 Climate change impacts
	15.5 Cost issues
	15.6 Integration into the broader energy system
	15.7 Future deployment
	References
16. Wind Energy
	16.1 Renewables in the context of limiting air pollution and climate change
	16.2 Wind among the renewables
	16.3 Offshore wind power
		16.3.1 Why offshore wind?
		16.3.2 Current state of offshore wind
		16.3.3 Offshore wind farm
		16.3.4 Wind turbines
		16.3.5 Foundations of offshore wind turbines
	16.4 Economics of offshore wind farms
	16.5 Future direction on the use of offshore wind
		16.5.1 Floating wind farm
		16.5.2 Seismic resilience of nuclear power plant through the use of offshore wind turbines
			16.5.2.1 Case study: performance of near shore wind farm during 2011 Tohoku earthquake
			16.5.2.2 Why did the wind farm stand up?
		16.5.3 Battery storage with wind
		16.5.4 Hydrogen production through offshore wind
	References
17. Tidal Current Energy: Origins and Challenges
	17.1 Introduction
	17.2 Tidal current drivers
		17.2.1 Astronomical drivers
		17.2.2 Creation of tidal currents
		17.2.3 Coriolis forces
		17.2.4 Amphidromic points
		17.2.5 Ocean tides
		17.2.6 Meteorological forces
		17.2.7 Bathymetry and topography
		17.2.8 Tidal current velocity
		17.2.9 Wave action
		17.2.10 Turbulence and storm surges
		17.2.11 Mooring loads and structural integrity
	17.3 Devices
		17.3.1 Marine current turbines (siemens)
		17.3.2 Andritz hydro hammerfest
		17.3.3 Open hydro
		17.3.4 Atlantis technologies
		17.3.5 Scotrenewables
		17.3.6 International projects
		17.3.7 Devices summary
	17.4 Anchors and fixings
		17.4.1 Gravity base and anchors
		17.4.2 Suction/drilled/driven pile anchors
		17.4.3 Sea snail (see )
		17.4.4 Anchors and fixings summary
	17.5 Biofouling
	17.6 Conclusions
	References
	Recommended reading
18. Photovoltaics, Including New Technologies (Thin Film) and a Discussion on Module Efficiency
	18.1 Introduction
	18.2 Solar energy
	18.3 Photovoltaic cells and modules
		18.3.1 Photovoltaic phenomena
		18.3.2 Photovoltaic cells
		18.3.3 Photovoltaic modules
			18.3.3.1 Crystalline silicon (wafer-based) technology
			18.3.3.2 Thin-film solar cell and module technology
			18.3.3.3 Emerging technologies
			18.3.3.4 The module parameters degradation and the service life
	18.4 Photovoltaic systems
		18.4.1 Stand-alone (autonomous) photovoltaic systems
			18.4.1.1 Direct-coupled system
			18.4.1.2 Stand-alone systems with energy accumulation
		18.4.2 Photovoltaic systems connected to the grid (grid-on)
			18.4.2.1 Inverters for PV on-grid systems
			18.4.2.2 Balance of system
		18.4.3 PV system operation, maintenance, and diagnostics
	18.5 Economy issues
	References
19. Concentrating Solar Power
	19.1 Introduction—concept and basic characteristics
	19.2 State of the art
		19.2.1 Parabolic trough power plants
			19.2.1.1 Direct steam generation
			19.2.1.2 Molten salt applications
		19.2.2 Linear fresnel systems
		19.2.3 Central receiver systems
		19.2.4 Parabolic dish engine systems
	19.3 Cost and market
		19.3.1 Cost structure and actual cost figures
		19.3.2 Potential impact of CSP until 2050
		19.3.3 Further options
	References
20. Geothermal Energy
	20.1 Geothermal energy resources
	20.2 Exploration
	20.3 Drilling and testing
	20.4 Electricity production from geothermal resources
	20.5 Geothermal reservoir management
	20.6 Direct use applications
	20.7 Geothermal energy and the environment
	20.8 Geothermal energy and communities
	20.9 The future of geothermal energy
	References
	Further reading
21. Energy From Biomass
	21.1 Introduction of biomass
	21.2 Production of conventional biofuels via bioconversions
		21.2.1 Bioethanol
		21.2.2 Biobutanol
		21.2.3 Biodiesel
	21.3 Production of advanced biofuels
		21.3.1 Fast pyrolysis
		21.3.2 Microwave-assisted pyrolysis
		21.3.3 Hydrothermal processing
	21.4 Production of third-generation biofuels from algae
		21.4.1 In situ transesterification
		21.4.2 Hydrothermal liquefaction
		21.4.3 Anaerobic digestion
	21.5 Utilization of biomass for heat and power generation
	21.6 Conclusions and future perspectives
	Acknowledgment
	References
Part 7: New Possible Energy Options
22. Hydrogen: An Energy Carrier
	22.1 Introduction
	22.2 Hydrogen
		22.2.1 Properties
		22.2.2 End-use applications
		22.2.3 The problems
		22.2.4 The potential payoff
			22.2.4.1 The environment and climate change
			22.2.4.2 Security and energy independence
	22.3 Basic elements needed for hydrogen utilization
		22.3.1 Production
			22.3.1.1 Production from fossil fuels
			22.3.1.2 Natural gas reforming
			22.3.1.3 Coal gasification
			22.3.1.4 Water splitting
			22.3.1.5 Water electrolysis
			22.3.1.6 High-temperature electrolysis
			22.3.1.7 Photoelectrolysis (photolysis)
			22.3.1.8 Solar thermochemical hydrogen (STCH)
			22.3.1.9 Photobiological production (biophotolysis)
			22.3.1.10 Biomass conversion
		22.3.2 Distribution
			22.3.2.1 Pipeline
			22.3.2.2 High-pressure tube trailer
			22.3.2.3 Liquefied hydrogen tankers
		22.3.3 Storage
			22.3.3.1 Physical based
				22.3.3.1.1 Compressed gas
				22.3.3.1.2 Cryogenic liquid hydrogen
			22.3.3.2 Material based
				22.3.3.2.1 Sorbents
				22.3.3.2.2 Metal hydrides
				22.3.3.2.3 Chemical hydrogen
		22.3.4 Safety: regulations, codes, and standards
			22.3.4.1 Material considerations
		22.3.5 Education and dissemination
	22.4 Current status
		22.4.1 Now and the future around the world
			22.4.1.1 Australia
			22.4.1.2 Austria
			22.4.1.3 Brazil
			22.4.1.4 Canada
			22.4.1.5 China
			22.4.1.6 France
			22.4.1.7 Germany
			22.4.1.8 Iceland
			22.4.1.9 India
			22.4.1.10 Japan
			22.4.1.11 The Netherlands
			22.4.1.12 New Zealand
			22.4.1.13 Norway
			22.4.1.14 Portugal
			22.4.1.15 Russian federation
			22.4.1.16 Republic of Korea (south)
			22.4.1.17 Republic of South Africa
			22.4.1.18 Sweden
			22.4.1.19 Turkey
			22.4.1.20 United Arab Emirates
			22.4.1.21 United Kingdom
			22.4.1.22 United States of America
	References
	Websites
23. Fuel Cells: Energy Conversion Technology
	23.1 Introduction
	23.2 Technological overview
		23.2.1 General information
		23.2.2 Proton exchange membrane fuel cell
		23.2.3 Phosphoric acid fuel cell
		23.2.4 Solid oxide fuel cell
		23.2.5 Other technologies
	23.3 Application
		23.3.1 Power technologies
		23.3.2 Fuel cell vehicles
		23.3.3 Others
			23.3.3.1 Portable power supply
			23.3.3.2 Backup power supply
	23.4 Environmental impact analysis
		23.4.1 Fuel cell production
		23.4.2 Influence of fuel sourcing on the environment
	23.5 Technoeconomic review
		23.5.1 System costs and cost development
		23.5.2 Operating and auxiliary costs
		23.5.3 Market development
	23.6 Challenges
	Acknowledgments
	References
24. Space Solar
	24.1 Overview and motivation
	24.2 Perspective
	24.3 Selected concepts
		24.3.1 Perpendicular to orbital plane architectures
		24.3.2 Sandwich module architectures
		24.3.3 Other space solar architectures
	24.4 Key technologies
		24.4.1 Transmitter efficiency
		24.4.2 Rectification at the receiver
	24.5 Performance metrics
		24.5.1 Collect/transmit area-specific mass [kg m−2]
		24.5.2 Mass-specific transmitted power [W kg−1]
		24.5.3 Combined conversion efficiency
		24.5.4 Additional figures of merit and qualities of interest for space segment elements
		24.5.5 Additional figures of merit and qualities of interest for solar power satellite systems
	24.6 Outlook
	Acknowledgments
	References
25 - Nuclear Fusion
	25.1 What is nuclear fusion?
	25.2 Desirable characteristics of fusion power
		25.2.1 Safety and waste
		25.2.2 Resources
		25.2.3 Compatibility with existing infrastructure
	25.3 Why fusion power is difficult
	25.4 Approaches to fusion reactors
	25.5 Economics of fusion energy
	25.6 Status of current research and prospects for fusion energy
	References
26. Synthetic Fuel Development
	26.1 Synthetic liquid fuel–beginnings from fossil fuels (1910–55)
	26.2 Present synthetic liquid fuel processes (1955–2011)
	26.3 Global energy production from fossil fuel
	26.4 Synthetic fuel beginnings from non–fossil fuel resources
		26.4.1 History of methanol synthesis
		26.4.2 Methanol synthesis from carbon dioxide
	26.5 Olefin synthesis from carbon dioxide
	26.6 Carbon monoxide synthesis from carbon dioxide
	26.7 Carbon capture for synthetic fuel production
	26.8 The future
	Acknowledgments
	References
Part 8: Environmental and Related Issues
27. Energy and the Environment
	27.1 Energy forms and sources
	27.2 Energy life cycles
	27.3 Upstream component
		27.3.1 Upstream impacts
		27.3.2 Mining stressors
		27.3.3 Crude oil and natural gas drilling stressors
		27.3.4 Environmental justice
	27.4 Fuel cycle stage
		27.4.1 Fuel cycle stressors
		27.4.2 Crude oil transport stressors
		27.4.3 Refining-related stressors
	27.5 Operation stage
		27.5.1 Combustion
		27.5.2 Operation
	27.6 Downstream component
	References
28. Sustainable Energy and Energy Efficient Technologies
	28.1 Introduction
	28.2 The existing stock of buildings and their energy use
	28.3 Energy use in buildings and attempts to reduce it
	28.4 Energy efficiency in buildings
	28.5 Distributed energy and its impact on demand
	28.6 Future of business models in the energy transition
	28.7 An overview of local supply models available through partnership with an energy supplier
	28.8 Demand side response (DSR)
	28.9 BEN the “Balanced Energy Network” case study
		28.9.1 How it works
	28.10 Local self-supply model—integration of renewable energy generation with battery storage
	28.11 Integrating solar PV with electricity storage to provide peak shaving and DSR services
	28.12 Change by sector
	28.13 Electrification versus hydrogen
	28.14 Smart-grids and multiple energy vectors
	28.15 Future energy professionals
	28.16 Conclusion
	References
	Further reading
Part 9: The Current Situation and the Transition to the Future
29. The Life Cycle Assessment of Various Energy Technologies
	29.1 Introduction
		29.1.1 Goal and scope definition
		29.1.2 Inventory analysis
		29.1.3 Life cycle impact assessment
		29.1.4 Interpretation and application
	29.2 Energy
	29.3 Example of LCA cases in the context of energy
		29.3.1 Coal
		29.3.2 Gas
		29.3.3 Petroleum, diesel
		29.3.4 Results from LCA studies
	29.4 Discussion and interpretation of LCA based results
	29.5 Other environmental impact indicators
	29.6 Endpoint environmental impact indicators
	29.7 LCA of renewable energy
	29.8 LCA of nuclear energy
	29.9 The future
	29.10 Source of additional information
	Acknowledgments
	References
	Further reading
30. Integration of High Penetrations of Intermittent Renewable Generation in Future Electricity Networks Using Storage
	30.1 The low-carbon transition of electricity networks
	30.2 Managing intermittency of PV through storage
	30.3 Energy storage technologies
		30.3.1 Vanadium redox Flow Batteries
		30.3.2 Supercapacitors
		30.3.3 Lead acid batteries
		30.3.4 Lithium-ion (Li-ion)
		30.3.5 Sodium-sulfur battery
		30.3.6 Pumped hydro energy storage
		30.3.7 Compressed air energy storage (CAES)
		30.3.8 Thermal energy storage (TES)
		30.3.9 Nickel-based batteries
		30.3.10 Flywheel
		30.3.11 Hybridization of energy storage systems
	30.4 Power conversion and control systems
		30.4.1 Power conversion for energy storage systems
			30.4.1.1 Power electronics devices for PCS
			30.4.1.2 Single stage converters
			30.4.1.3 Double-stage converters
			30.4.1.4 Multilevel converters
			30.4.1.5 Price comparison of PCS technology providers
		30.4.2 Control of energy storage systems
	References
	Further reading
31. Carbon Capture and Storage
	31.1 Introduction
	31.2 Capture
		31.2.1 Postcombustion capture
		31.2.2 Precombustion capture
		31.2.3 Oxyfuel combustion
	31.3 Transport
	31.4 Storage
	31.5 Conclusion
	References
32. Energy Transition Toward Paris Targets in China
	32.1 Background
	32.2 Methodology
		32.2.1 Methodology framework
		32.2.2 Models
		32.2.3 Scenario
	32.3 Scenario setting
	32.4 Scenario results
		32.4.1 Energy scenario
		32.4.2 Emission scenarios
	32.5 Conclusion
	References
	Further reading
33. Metals and Elements Needed to Support Future Energy Systems
	33.1 Introduction and background
	33.2 Renewable energy technologies and their material requirements
		33.2.1 Solar photovoltaic panels
		33.2.2 Wind turbines
		33.2.3 Energy storage batteries
	33.3 Global mining and metals production
		33.3.1 Brief background and key concepts
		33.3.2 Reserves and resources of important metals for future energy technologies
		33.3.3 Mine and smelter/refinery production
	33.4 Summary and conclusions
	References
34. A Global Overview of Future Energy
	34.1 Fundamental requirements for energy systems in 21st century
	34.2 Scenarios of major international institutions
	34.3 Scenarios for 100% renewable energy
	34.4 Major technologies for future energy
	34.5 Research gaps for a future energy system
	34.6 Conclusions
	References
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
Back Cover




نظرات کاربران