دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: RUMANA HUSNAIN TAQSIM RIFFAT
سری:
ISBN (شابک) : 9780367681302, 0367681307
ناشر: CRC PRESS
سال نشر: 2022
تعداد صفحات: 431
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 22 مگابایت
در صورت تبدیل فایل کتاب FUNDAMENTALS OF WASTEWATER TREATMENT AND ENGINEERING. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی تصفیه و مهندسی فاضلاب. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Dedication Table of Contents Preface Acknowledgments List of symbols List of abbreviations About the authors Chapter 1: Sustainable wastewater treatment and engineering 1.1 Introduction and history 1.2 Current practice 1.3 Emerging issues 1.4 Future directions 1.5 Regulatory requirements 1.5.1 United States regulations 1.5.2 European Union regulations 1.5.3 United Kingdom regulations References Chapter 2: Reaction kinetics and chemical reactors 2.1 Reaction kinetics 2.2 How to find the order of a reaction 2.3 Zero order reaction 2.4 First order reaction 2.5 Second order reaction 2.6 Reactors 2.6.1 Conversion of a reactant 2.6.2 Detention time in a reactor 2.7 Batch reactor 2.7.1 Design equation 2.8 Plug flow reactor 2.8.1 Design equation 2.9 Continuous-flow stirred tank reactor 2.9.1 Design equation 2.10 Reactors in series 2.11 Semi-batch or semi-flow reactors Problems References Chapter 3: Wastewater microbiology 3.1 Introduction 3.2 Bacteria 3.2.1 Cell composition and structure 3.2.2 Bacterial growth curve 3.2.3 Classification by carbon and energy requirement 3.2.4 Classification by oxygen requirement 3.2.5 Classification by temperature 3.2.6 Bacteria of significance 3.3 Archaea 3.4 Protozoa 3.5 Algae 3.6 Fungi 3.7 Virus 3.8 Major outbreaks 3.8.1 SARS-CoV-2 (Coronavirus) Problems References Chapter 4: Natural purification processes 4.1 Impurities in water 4.2 Dilution 4.3 Sedimentation 4.4 Microbial degradation 4.5 Measurement of organic matter 4.5.1 Biochemical oxygen demand (BOD) 4.5.1.1 BOD kinetics 4.5.1.2 Laboratory measurement 4.5.1.3 Unseeded BOD test 4.5.1.4 Seeded BOD test 4.5.1.5 Determination of k and L o 4.5.1.6 Thomas’ graphical method 4.5.2 Theoretical oxygen demand 4.6 Dissolved oxygen balance 4.6.1 Dissolved oxygen sag curve 4.6.1.1 Critical points 4.6.1.2 Limitations of the oxygen sag curve model Problems References Chapter 5: Wastewater treatment fundamentals 5.1 Introduction 5.2 Sources of wastewater 5.3 Wastewater flow rate 5.3.1 Design period 5.3.2 Population projection 5.3.2.1 Constant growth method 5.3.2.2 Log growth method 5.3.2.3 Percent growth method 5.3.2.4 Ratio method 5.3.2.5 Declining growth method 5.3.3 Wastewater flow 5.3.3.1 Residential wastewater flow 5.3.3.2 Commercial and institutional wastewater flow 5.3.3.3 Industrial wastewater flow 5.3.4 Infiltration and inflow 5.3.5 Variability of wastewater flow 5.4 Wastewater constituents 5.5 Wastewater treatment methods 5.5.1 Physical treatment 5.5.2 Chemical treatment 5.5.3 Biological treatment 5.6 Levels of wastewater treatment 5.6.1 Preliminary treatment 5.6.2 Primary treatment 5.6.3 Enhanced primary treatment 5.6.4 Conventional secondary treatment 5.6.5 Secondary treatment with nutrient removal 5.6.6 Tertiary treatment 5.6.7 Advanced treatment 5.7 Residuals and biosolids management 5.8 Flow diagrams of treatment options 5.9 Types of biological treatment processes Problems References Chapter 6: Preliminary treatment 6.1 Introduction 6.2 Screens 6.2.1 Trash racks 6.2.2 Coarse screens or bar screens 6.2.2.1 Design of coarse screens 6.2.3 Fine screens 6.2.3.1 Design of fine screens 6.2.4 Microscreens 6.3 Shredder/Grinder 6.4 Grit chamber 6.5 Flow equalization 6.5.1 Equalization tank design Problems References Chapter 7: Primary treatment 7.1 Introduction 7.2 Types of settling/sedimentation 7.3 Type I sedimentation 7.3.1 Theory of discrete particle settling 7.3.1.1 Stokes equation 7.3.2 Design of ideal sedimentation tank 7.4 Type II sedimentation 7.5 Primary sedimentation 7.5.1 Rectangular sedimentation tank 7.5.2 Circular sedimentation tank 7.6 Chemically enhanced primary treatment (CEPT) Problems References Chapter 8: Secondary treatment: Suspended growth process 8.1 Introduction 8.2 Microbial growth kinetics 8.2.1 Biomass yield 8.2.2 Logarithmic growth phase 8.2.3 Monod model 8.2.4 Biomass growth and substrate utilization 8.2.5 Other rate expressions for r su 8.2.6 Endogenous metabolism 8.2.7 Net rate of growth 8.2.8 Rate of oxygen uptake 8.2.9 Effect of temperature 8.3 Activated sludge process (for BOD removal) 8.3.1 Design and operational parameters 8.3.2 Factors affecting microbial growth 8.3.3 Stoichiometry of aerobic oxidation 8.4 Modeling suspended growth processes 8.4.1 CSTR without recycle 8.4.2 Activated sludge reactor (CSTR with recycle) 8.4.2.1 Other useful relationships 8.4.3 Activated sludge reactor (Plug flow reactor with recycle) 8.4.4 Limitations of the models 8.4.5 Aeration requirements 8.4.5.1 Types of aerators 8.5 Types of suspended growth processes 8.5.1 Conventional activated sludge 8.5.2 Step aeration or step feed process 8.5.3 Tapered aeration process 8.5.4 Contact stabilization process 8.5.5 Staged activated sludge process 8.5.6 Extended aeration process 8.5.7 Oxidation ditch 8.5.8 Sequencing batch reactor (SBR) 8.5.9 Membrane biological reactor (MBR) 8.6 Stabilization ponds and lagoons 8.6.1 Process microbiology 8.6.2 Design of pond or lagoon system 8.6.3 Design practice 8.7 Septic tank system 8.7.1 Process description 8.7.2 Types of septic systems 8.7.3 Design considerations Problems References Chapter 9: Secondary treatment: Attached growth and combined processes 9.1 Introduction 9.2 System microbiology and biofilms 9.3 Important media characteristics 9.4 Loading rates 9.5 Stone media trickling filter 9.5.1 Design equations for stone media 9.6 Bio-tower 9.6.1 Design equations for plastic media 9.7 Rotating biological contactor (RBC) 9.8 Hybrid processes 9.8.1 Moving bed biofilm reactor (MBBR) 9.8.2 Integrated fixed-film activated sludge (IFAS) 9.8.3 Fluidized bed bioreactor (FBBR) 9.9 Combined processes Problems References Chapter 10: Secondary clarification and disinfection 10.1 Introduction 10.2 Secondary clarifier for suspended growth process 10.2.1 Settling column test 10.2.2 Solids flux analysis 10.2.2.1 Theory 10.2.2.2 Determination of area required for thickening 10.2.2.3 Secondary clarifier design based on solids flux analysis 10.2.3 State point analysis 10.2.3.1 Theory 10.2.3.2 Clarifier evaluation based on state point analysis 10.3 Secondary clarifier for attached growth process 10.4 Disinfection 10.5 Post-aeration Problems References Chapter 11: Anaerobic wastewater treatment 11.1 Introduction 11.2 Process chemistry and microbiology 11.2.1 Syntrophic relationships 11.3 Methanogenic bacteria 11.4 Sulfate-reducing bacteria 11.5 Environmental requirements and toxicity 11.6 Methane gas production 11.6.1 Stoichiometry 11.6.2 Biochemical methane potential assay 11.6.3 Anaerobic toxicity assay (ATA) 11.7 Anaerobic growth kinetics 11.8 Anaerobic suspended growth processes 11.8.1 Anaerobic contact process 11.8.2 Upflow anaerobic sludge blanket process 11.8.2.1 Design equations 11.8.3 Expanded granular sludge bed (EGSB) 11.8.4 Anaerobic sequencing batch reactor 11.8.5 Anaerobic migrating blanket reactor 11.9 Anaerobic attached growth processes 11.9.1 Anaerobic filter 11.9.2 Anaerobic expanded bed reactor 11.10 Hybrid processes 11.10.1 Anaerobic fluidized bed reactor 11.10.2 Anaerobic membrane bioreactor Problems References Chapter 12: Solids processing and disposal: 12.1 Introduction 12.2 Characteristics of municipal sludge 12.3 Sludge quantification 12.4 Sludge thickening 12.4.1 Gravity thickener 12.4.2 Dissolved air flotation 12.4.3 Centrifugation 12.5 Sludge stabilization 12.5.1 Alkaline stabilization 12.5.1.1 Chemical reactions 12.5.1.2 Lime pretreatment 12.5.1.3 Lime post-treatment 12.5.2 Anaerobic digestion 12.5.2.1 Single-stage mesophilic digestion 12.5.2.1.1 Design of digester 12.5.2.1.2 Gas production and use 12.5.2.1.3 Digester heating 12.5.2.2 Two-stage mesophilic digestion 12.5.2.3 Thermophilic anaerobic digestion 12.5.2.4 Temperature-phased anaerobic digestion (TPAD) 12.5.2.5 Acid-gas phased digestion 12.5.2.6 Enhanced Enzymic Hydrolysis TM 12.5.2.7 Cambi TM process 12.5.3 Aerobic digestion 12.5.3.1 Autothermal thermophilic aerobic digestion 12.5.3.2 Dual digestion 12.5.4 Composting 12.6 Conditioning of biosolids 12.7 Biosolids dewatering 12.7.1 Centrifugation 12.7.1.1 High-solids centrifuge 12.7.2 Belt-filter press 12.7.3 Drying beds 12.8 Disposal of biosolids 12.8.1 Incineration 12.8.2 Land disposal methods 12.9 Biosolids disposal regulations in the US 12.9.1 Class A biosolids 12.9.1.1 Processes to further reduce pathogens (PFRP) 12.9.2 Class B biosolids 12.9.2.1 Processes to significantly reduce pathogens (PSRP) Problems References Chapter 13: Advanced treatment processes 13.1 Introduction 13.2 Nitrogen removal 13.2.1 Biological nitrogen removal 13.2.1.1 Nitrification–denitrification 13.2.1.1.1 Nitrification stoichiometry 13.2.1.1.2 Nitrification kinetics 13.2.1.1.3 Denitrification stoichiometry 13.2.1.1.4 Denitrification kinetics 13.2.1.1.5 External carbon sources for denitrification 13.2.1.1.6 Nitrification–denitrification processes 13.2.1.2 Nitritation–denitritation 13.2.1.2.1 SHARON TM process 13.2.1.3 Deammonification 13.2.1.3.1 Anammox TM process 13.2.2 Physico-chemical process for nitrogen removal 13.2.2.1 Air stripping 13.3 Phosphorus removal 13.3.1 Chemical precipitation 13.3.2 Biological phosphorus removal (BPR) 13.3.2.1 Selected processes for BPR 13.3.2.2 Phoredox 13.3.2.3 A 2 O TM process 13.3.2.4 Modified Bardenpho TM (five stage) 13.3.2.5 UCT process 13.4 Solids removal 13.4.1 Granular media filtration 13.4.2 Activated carbon adsorption 13.4.3 Membrane filtration 13.4.3.1 Fundamental equations 13.4.3.2 Membrane fouling 13.4.3.3 Membrane configurations 13.4.4 Process flow diagrams Problems References Chapter 14: Resource recovery and sustainability 14.1 Introduction 14.2 Sustainable design principles 14.3 Nutrient recovery 14.3.1 Nutrient applications 14.4 Energy recovery 14.4.1 Energy applications 14.5 Water recovery 14.5.1 Reclaimed water applications 14.6 Examples of best practices References Chapter 15: Design examples 15.1 Introduction 15.2 Design example – conventional wastewater treatment plant 15.3 Design example – decentralized wastewater treatment in a rural location References Appendix A Index