ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب FUNDAMENTALS OF WASTEWATER TREATMENT AND ENGINEERING.

دانلود کتاب مبانی تصفیه و مهندسی فاضلاب.

FUNDAMENTALS OF WASTEWATER TREATMENT AND ENGINEERING.

مشخصات کتاب

FUNDAMENTALS OF WASTEWATER TREATMENT AND ENGINEERING.

ویرایش: 2 
نویسندگان:   
سری:  
ISBN (شابک) : 9780367681302, 0367681307 
ناشر: CRC PRESS 
سال نشر: 2022 
تعداد صفحات: 431 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 22 مگابایت 

قیمت کتاب (تومان) : 54,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 12


در صورت تبدیل فایل کتاب FUNDAMENTALS OF WASTEWATER TREATMENT AND ENGINEERING. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مبانی تصفیه و مهندسی فاضلاب. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Dedication
Table of Contents
Preface
Acknowledgments
List of symbols
List of abbreviations
About the authors
Chapter 1: Sustainable wastewater treatment and engineering
	1.1 Introduction and history
	1.2 Current practice
	1.3 Emerging issues
	1.4 Future directions
	1.5 Regulatory requirements
		1.5.1 United States regulations
		1.5.2 European Union regulations
		1.5.3 United Kingdom regulations
	References
Chapter 2: Reaction kinetics and chemical reactors
	2.1 Reaction kinetics
	2.2 How to find the order of a reaction
	2.3 Zero order reaction
	2.4 First order reaction
	2.5 Second order reaction
	2.6 Reactors
		2.6.1 Conversion of a reactant
		2.6.2 Detention time in a reactor
	2.7 Batch reactor
		2.7.1 Design equation
	2.8 Plug flow reactor
		2.8.1 Design equation
	2.9 Continuous-flow stirred tank reactor
		2.9.1 Design equation
	2.10 Reactors in series
	2.11 Semi-batch or semi-flow reactors
	Problems
	References
Chapter 3: Wastewater microbiology
	3.1 Introduction
	3.2 Bacteria
		3.2.1 Cell composition and structure
		3.2.2 Bacterial growth curve
		3.2.3 Classification by carbon and energy requirement
		3.2.4 Classification by oxygen requirement
		3.2.5 Classification by temperature
		3.2.6 Bacteria of significance
	3.3 Archaea
	3.4 Protozoa
	3.5 Algae
	3.6 Fungi
	3.7 Virus
	3.8 Major outbreaks
		3.8.1 SARS-CoV-2 (Coronavirus)
	Problems
	References
Chapter 4: Natural purification processes
	4.1 Impurities in water
	4.2 Dilution
	4.3 Sedimentation
	4.4 Microbial degradation
	4.5 Measurement of organic matter
		4.5.1 Biochemical oxygen demand (BOD)
			4.5.1.1 BOD kinetics
			4.5.1.2 Laboratory measurement
			4.5.1.3 Unseeded BOD test
			4.5.1.4 Seeded BOD test
			4.5.1.5 Determination of k and L o
			4.5.1.6 Thomas’ graphical method
		4.5.2 Theoretical oxygen demand
	4.6 Dissolved oxygen balance
		4.6.1 Dissolved oxygen sag curve
			4.6.1.1 Critical points
			4.6.1.2 Limitations of the oxygen sag curve model
	Problems
	References
Chapter 5: Wastewater treatment fundamentals
	5.1 Introduction
	5.2 Sources of wastewater
	5.3 Wastewater flow rate
		5.3.1 Design period
		5.3.2 Population projection
			5.3.2.1 Constant growth method
			5.3.2.2 Log growth method
			5.3.2.3 Percent growth method
			5.3.2.4 Ratio method
			5.3.2.5 Declining growth method
	5.3.3 Wastewater flow
		5.3.3.1 Residential wastewater flow
		5.3.3.2 Commercial and institutional wastewater flow
		5.3.3.3 Industrial wastewater flow
	5.3.4 Infiltration and inflow
	5.3.5 Variability of wastewater flow
	5.4 Wastewater constituents
	5.5 Wastewater treatment methods
		5.5.1 Physical treatment
		5.5.2 Chemical treatment
		5.5.3 Biological treatment
	5.6 Levels of wastewater treatment
		5.6.1 Preliminary treatment
		5.6.2 Primary treatment
		5.6.3 Enhanced primary treatment
		5.6.4 Conventional secondary treatment
		5.6.5 Secondary treatment with nutrient removal
		5.6.6 Tertiary treatment
		5.6.7 Advanced treatment
	5.7 Residuals and biosolids management
	5.8 Flow diagrams of treatment options
	5.9 Types of biological treatment processes
	Problems
	References
Chapter 6: Preliminary treatment
	6.1 Introduction
	6.2 Screens
		6.2.1 Trash racks
		6.2.2 Coarse screens or bar screens
			6.2.2.1 Design of coarse screens
		6.2.3 Fine screens
			6.2.3.1 Design of fine screens
		6.2.4 Microscreens
	6.3 Shredder/Grinder
	6.4 Grit chamber
	6.5 Flow equalization
		6.5.1 Equalization tank design
	Problems
	References
Chapter 7: Primary treatment
	7.1 Introduction
	7.2 Types of settling/sedimentation
	7.3 Type I sedimentation
		7.3.1 Theory of discrete particle settling
			7.3.1.1 Stokes equation
		7.3.2 Design of ideal sedimentation tank
	7.4 Type II sedimentation
	7.5 Primary sedimentation
		7.5.1 Rectangular sedimentation tank
		7.5.2 Circular sedimentation tank
	7.6 Chemically enhanced primary treatment (CEPT)
	Problems
	References
Chapter 8: Secondary treatment: Suspended growth process
	8.1 Introduction
	8.2 Microbial growth kinetics
		8.2.1 Biomass yield
		8.2.2 Logarithmic growth phase
		8.2.3 Monod model
		8.2.4 Biomass growth and substrate utilization
		8.2.5 Other rate expressions for r su
		8.2.6 Endogenous metabolism
		8.2.7 Net rate of growth
		8.2.8 Rate of oxygen uptake
		8.2.9 Effect of temperature
	8.3 Activated sludge process (for BOD removal)
		8.3.1 Design and operational parameters
		8.3.2 Factors affecting microbial growth
		8.3.3 Stoichiometry of aerobic oxidation
	8.4 Modeling suspended growth processes
		8.4.1 CSTR without recycle
		8.4.2 Activated sludge reactor (CSTR with recycle)
			8.4.2.1 Other useful relationships
		8.4.3 Activated sludge reactor (Plug flow reactor with recycle)
		8.4.4 Limitations of the models
		8.4.5 Aeration requirements
			8.4.5.1 Types of aerators
	8.5 Types of suspended growth processes
		8.5.1 Conventional activated sludge
		8.5.2 Step aeration or step feed process
		8.5.3 Tapered aeration process
		8.5.4 Contact stabilization process
		8.5.5 Staged activated sludge process
		8.5.6 Extended aeration process
		8.5.7 Oxidation ditch
		8.5.8 Sequencing batch reactor (SBR)
		8.5.9 Membrane biological reactor (MBR)
	8.6 Stabilization ponds and lagoons
		8.6.1 Process microbiology
		8.6.2 Design of pond or lagoon system
		8.6.3 Design practice
	8.7 Septic tank system
		8.7.1 Process description
		8.7.2 Types of septic systems
		8.7.3 Design considerations
	Problems
	References
Chapter 9: Secondary treatment: Attached growth and combined processes
	9.1 Introduction
	9.2 System microbiology and biofilms
	9.3 Important media characteristics
	9.4 Loading rates
	9.5 Stone media trickling filter
		9.5.1 Design equations for stone media
	9.6 Bio-tower
		9.6.1 Design equations for plastic media
	9.7 Rotating biological contactor (RBC)
	9.8 Hybrid processes
		9.8.1 Moving bed biofilm reactor (MBBR)
		9.8.2 Integrated fixed-film activated sludge (IFAS)
		9.8.3 Fluidized bed bioreactor (FBBR)
	9.9 Combined processes
	Problems
	References
Chapter 10: Secondary clarification and disinfection
	10.1 Introduction
	10.2 Secondary clarifier for suspended growth process
		10.2.1 Settling column test
		10.2.2 Solids flux analysis
			10.2.2.1 Theory
			10.2.2.2 Determination of area required for thickening
			10.2.2.3 Secondary clarifier design based on solids flux analysis
		10.2.3 State point analysis
			10.2.3.1 Theory
			10.2.3.2 Clarifier evaluation based on state point analysis
	10.3 Secondary clarifier for attached growth process
	10.4 Disinfection
	10.5 Post-aeration
	Problems
	References
Chapter 11: Anaerobic wastewater treatment
	11.1 Introduction
	11.2 Process chemistry and microbiology
		11.2.1 Syntrophic relationships
	11.3 Methanogenic bacteria
	11.4 Sulfate-reducing bacteria
	11.5 Environmental requirements and toxicity
	11.6 Methane gas production
		11.6.1 Stoichiometry
		11.6.2 Biochemical methane potential assay
		11.6.3 Anaerobic toxicity assay (ATA)
	11.7 Anaerobic growth kinetics
	11.8 Anaerobic suspended growth processes
		11.8.1 Anaerobic contact process
		11.8.2 Upflow anaerobic sludge blanket process
			11.8.2.1 Design equations
		11.8.3 Expanded granular sludge bed (EGSB)
		11.8.4 Anaerobic sequencing batch reactor
		11.8.5 Anaerobic migrating blanket reactor
	11.9 Anaerobic attached growth processes
		11.9.1 Anaerobic filter
		11.9.2 Anaerobic expanded bed reactor
	11.10 Hybrid processes
		11.10.1 Anaerobic fluidized bed reactor
		11.10.2 Anaerobic membrane bioreactor
	Problems
	References
Chapter 12: Solids processing and disposal:
	12.1 Introduction
	12.2 Characteristics of municipal sludge
	12.3 Sludge quantification
	12.4 Sludge thickening
		12.4.1 Gravity thickener
		12.4.2 Dissolved air flotation
		12.4.3 Centrifugation
	12.5 Sludge stabilization
		12.5.1 Alkaline stabilization
			12.5.1.1 Chemical reactions
			12.5.1.2 Lime pretreatment
			12.5.1.3 Lime post-treatment
		12.5.2 Anaerobic digestion
			12.5.2.1 Single-stage mesophilic digestion
				12.5.2.1.1 Design of digester
				12.5.2.1.2 Gas production and use
				12.5.2.1.3 Digester heating
			12.5.2.2 Two-stage mesophilic digestion
			12.5.2.3 Thermophilic anaerobic digestion
			12.5.2.4 Temperature-phased anaerobic digestion (TPAD)
			12.5.2.5 Acid-gas phased digestion
			12.5.2.6 Enhanced Enzymic Hydrolysis TM
			12.5.2.7 Cambi TM process
		12.5.3 Aerobic digestion
			12.5.3.1 Autothermal thermophilic aerobic digestion
			12.5.3.2 Dual digestion
		12.5.4 Composting
	12.6 Conditioning of biosolids
	12.7 Biosolids dewatering
		12.7.1 Centrifugation
			12.7.1.1 High-solids centrifuge
		12.7.2 Belt-filter press
		12.7.3 Drying beds
	12.8 Disposal of biosolids
		12.8.1 Incineration
		12.8.2 Land disposal methods
	12.9 Biosolids disposal regulations in the US
		12.9.1 Class A biosolids
			12.9.1.1 Processes to further reduce pathogens (PFRP)
		12.9.2 Class B biosolids
			12.9.2.1 Processes to significantly reduce pathogens (PSRP)
	Problems
	References
Chapter 13: Advanced treatment processes
	13.1 Introduction
	13.2 Nitrogen removal
		13.2.1 Biological nitrogen removal
			13.2.1.1 Nitrification–denitrification
				13.2.1.1.1 Nitrification stoichiometry
				13.2.1.1.2 Nitrification kinetics
				13.2.1.1.3 Denitrification stoichiometry
				13.2.1.1.4 Denitrification kinetics
				13.2.1.1.5 External carbon sources for denitrification
				13.2.1.1.6 Nitrification–denitrification processes
			13.2.1.2 Nitritation–denitritation
				13.2.1.2.1 SHARON TM process
			13.2.1.3 Deammonification
				13.2.1.3.1 Anammox TM process
			13.2.2 Physico-chemical process for nitrogen removal
				13.2.2.1 Air stripping
	13.3 Phosphorus removal
		13.3.1 Chemical precipitation
		13.3.2 Biological phosphorus removal (BPR)
			13.3.2.1 Selected processes for BPR
			13.3.2.2 Phoredox
			13.3.2.3 A 2 O TM process
			13.3.2.4 Modified Bardenpho TM (five stage)
			13.3.2.5 UCT process
	13.4 Solids removal
		13.4.1 Granular media filtration
		13.4.2 Activated carbon adsorption
		13.4.3 Membrane filtration
			13.4.3.1 Fundamental equations
			13.4.3.2 Membrane fouling
			13.4.3.3 Membrane configurations
		13.4.4 Process flow diagrams
	Problems
	References
Chapter 14: Resource recovery and sustainability
	14.1 Introduction
	14.2 Sustainable design principles
	14.3 Nutrient recovery
		14.3.1 Nutrient applications
	14.4 Energy recovery
		14.4.1 Energy applications
	14.5 Water recovery
		14.5.1 Reclaimed water applications
	14.6 Examples of best practices
	References
Chapter 15: Design examples
	15.1 Introduction
	15.2 Design example – conventional wastewater treatment plant
	15.3 Design example – decentralized wastewater treatment in a rural location
	References
Appendix A
Index




نظرات کاربران