ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Fundamentals of Thermodynamics

دانلود کتاب مبانی ترمودینامیک

Fundamentals of Thermodynamics

مشخصات کتاب

Fundamentals of Thermodynamics

ویرایش:  
نویسندگان: ,   
سری:  
ISBN (شابک) : 9781119495246, 2018053073 
ناشر: Wiley 
سال نشر: 2018 
تعداد صفحات: [813] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 17 Mb 

قیمت کتاب (تومان) : 35,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Fundamentals of Thermodynamics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مبانی ترمودینامیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Title Page
Copyright
Preface
Contents
Symbols
Chapter 1 Problems
1 Introduction and Preliminaries
	1.1 A Thermodynamic System and the Control Volume
	1.2 Macroscopic Versus Microscopic Points of View
	1.3 Properties and State of a Substance
	1.4 Processes and Cycles
	1.5 Units for Mass, Length, Time, and Force
	1.6 Specific Volume and Density
	1.7 Pressure
	1.8 Energy
	1.9 Equality of Temperature
	1.10 The Zeroth Law of Thermodynamics
	1.11 Temperature Scales
	1.12 Engineering Applications
	Key Concepts and Formulas
Chapter 2 Problems
2 Properties of a Pure Substance
	2.1 The Pure Substance
	2.2 The Phase Boundaries
	2.3 The P–v–T Surface
	2.4 Tables of Thermodynamic Properties
	2.5 The Two-Phase States
	2.6 The Liquid and Solid States
	2.7 The Superheated Vapor States
	2.8 The Ideal Gas States
	2.9 The Compressibility Factor
	2.10 Equations of State
	2.11 Engineering Applications
	Key Concepts and Formulas
Chapter 3 Problems
3 Energy Equation and First Law of Thermodynamics
	3.1 The Energy Equation
	3.2 The First Law of Thermodynamics
	3.3 The Definition of Work
		Units of Work
	3.4 Work Done at the Moving Boundary of a Simple Compressible System
		The Polytropic Process
	3.5 Definition of Heat
	3.6 Heat Transfer Modes
	3.7 Internal Energy—A Thermodynamic Property
	3.8 Problem Analysis and Solution Technique
	3.9 The Thermodynamic Property Enthalpy
	3.10 The Constant-Volume and Constant-Pressure Specific Heats
		Solids and Liquids
	3.11 The Internal Energy, Enthalpy, and Specific Heat of Ideal Gases
	3.12 Nonuniform Distribution of States and Mass
	3.13 The Transient Process
	3.14 General Systems that Involve Work
	3.15 Engineering Applications
		Energy Resources
		Energy Conversion and Transformation
		Energy Storage
		Energy Transfer
	Key Concepts and Formulas
Chapter 4 Problems
4 Energy Analysis for a Control Volume
	4.1 Conservation of Mass and the Control Volume
	4.2 The Energy Equation for a Control Volume
	4.3 The Steady-State Process
	4.4 Examples of Steady-State Processes
		Heat Exchanger
		Nozzle
		Diffuser
		Throttle
		Turbine
		Compressor and Pump
		Complete Cycles: Power Plant and Refrigerator
	4.5 Multiple-Flow Devices
	4.6 The Transient Flow Process
	4.7 Engineering Applications
		Flow Systems and Flow Devices
		Passive Devices as Nozzles, Diffusers, and Valves or Throttles
		Heaters/Coolers and Heat Exchangers
		Active Flow Devices and Systems
		Multiflow Devices
	Key Concepts and Formulas
Chapter 5 Problems
5 The Second Law of Thermodynamics
	5.1 Heat Engines and Refrigerators
	5.2 The Second Law of Thermodynamics
	5.3 The Reversible Process
	5.4 Factors that Render Processes Irreversible
		Friction
		Unrestrained Expansion
		Heat Transfer Through a Finite Temperature Difference
		Mixing
		Other Factors
	5.5 The Carnot Cycle
	5.6 Two Propositions Regarding the Efficiency of a Carnot Cycle
		First Proposition
		Second Proposition
	5.7 The Thermodynamic Temperature Scale
	5.8 The Ideal Gas Temperature Scale
	5.9 Ideal Versus Real Machines
		Actual Heat Engines and Heat Pumps
	5.10 The Inequality of Clausius
	5.11 Engineering Applications
		Some Historical Developments in Thermodynamics
	Key Concepts and Formulas
Chapter 6 Problems
6 Entropy
	6.1 Entropy—A Property of a System
	6.2 The Entropy of a Pure Substance
	6.3 Entropy Change in Reversible Processes
	6.4 The Thermodynamic Property Relation
	6.5 Entropy Change of a Solid or Liquid
	6.6 Entropy Change of an Ideal Gas
	6.7 The Reversible Polytropic Process for an Ideal Gas
	6.8 Entropy Change of a Control Mass During an Irreversible Process
	6.9 Entropy Generation and the Entropy Equation
	6.10 Principle of the Increase of Entropy
	6.11 Entropy as a Rate Equation
	6.12 Some General Comments About Entropy and Chaos
	Key Concepts and Formulas
Chapter 7 Problems
7 Entropy Analysis for a Control Volume
	7.1 The Entropy Equation for a Control Volume
	7.2 The Steady-State Process and the Transient Process
		Steady-State Process
		Transient Process
	7.3 The Steady-State Single‐Flow Process
	7.4 Principle of the Increase of Entropy
	7.5 Engineering Applications; Energy Conservation and Device Efficiency
	Key Concepts and Formulas
Chapter 8 Problems
8 Exergy
	8.1 Exergy, Reversible Work, and Irreversibility
		The Steady State Process
		The Control Mass Process
		The Transient Process
	8.2 Exergy and Its Balance Equation
	8.3 The Second Law Efficiency
	8.4 Engineering Applications
	Key Concepts and Formulas
Chapter 9 Problems
9 Power and Refrigeration Systems—With Phase Change
	9.1 Introduction to Power Systems
	9.2 The Rankine Cycle
	9.3 Effect of Pressure and Temperature on the Rankine Cycle
	9.4 The Reheat Cycle
	9.5 The Regenerative Cycle and Feedwater Heaters
	9.6 Deviation of Actual Cycles from Ideal Cycles
		Turbine Losses
		Pump Losses
		Piping Losses
		Condenser Losses
	9.7 Combined Heat and Power: Other Configurations
	9.8 Introduction to Refrigeration Systems
	9.9 The Vapor-Compression Refrigeration Cycle
	9.10 Working Fluids for Vapor-Compression Refrigeration Systems
	9.11 Deviation of the Actual Vapor-Compression Refrigeration Cycle from the Ideal Cycle
	9.12 Refrigeration Cycle Configurations
	9.13 The Absorption Refrigeration Cycle
	9.14 Exergy Analysis of Cycles
	Key Concepts and Formulas
Chapter 10 Problems
10 Power and Refrigeration Systems—Gaseous Working Fluids
	10.1 Air-Standard Power Cycles
	10.2 The Brayton Cycle
	10.3 The Simple Gas-Turbine Cycle with a Regenerator
	10.4 Gas-Turbine Power Cycle Configurations
	10.5 The Air-Standard Cycle for Jet Propulsion
	10.6 The Air-Standard Refrigeration Cycle
	10.7 Reciprocating Engine Power Cycles
	10.8 The Otto Cycle
	10.9 The Diesel Cycle
	10.10 The Stirling Cycle
	10.11 The Atkinson and Miller Cycles
	10.12 Combined-Cycle Power and Refrigeration Systems
	Key Concepts and Formulas
Chapter 11 Problems
11 Gas Mixtures
	11.1 General Considerations and Mixtures of Ideal Gases
		Dalton Model
	11.2 A Simplified Model of a Mixture Involving Gases and a Vapor
	11.3 The Energy Equation Applied to Gas–Vapor Mixtures
	11.4 The Adiabatic Saturation Process
	11.5 Engineering Applications—Wet-Bulb and Dry-Bulb Temperatures and the Psychrometric Chart
	Key Concepts and Formulas
Chapter 12 Problems
12 Thermodynamic Relations
	12.1 The Clapeyron Equation
	12.2 Mathematical Relations for a Homogeneous Phase
	12.3 The Maxwell Relations
	12.4 Thermodynamic Relations Involving Enthalpy, Internal Energy, and Entropy
	12.5 Volume Expansivity and Isothermal and Adiabatic Compressibility
	12.6 Real-Gas Behavior and Equations of State
	12.7 The Generalized Chart for Changes of Enthalpy at Constant Temperature
	12.8 The Generalized Chart for Changes of Entropy at Constant Temperature
	12.9 The Property Relation for Mixtures
	12.10 Pseudopure Substance Models for Real Gas Mixtures
	12.11 Engineering Applications
		Thermodynamic Tables
		Special Applications
	Key Concepts and Formulas
Chapter 13 Problems
13 Chemical Reactions
	13.1 Fuels
	13.2 The Combustion Process
	13.3 Enthalpy of Formation
	13.4 Energy Analysis of Reacting Systems
	13.5 Enthalpy and Internal Energy of Combustion; Heating Value
	13.6 Adiabatic Flame Temperature
	13.7 The Third Law of Thermodynamics and Absolute Entropy
	13.8 Second-Law Analysis of Reacting Systems
	13.9 Fuel Cells
	13.10 Engineering Applications
	Key Concepts and Formulas
Chapter 14 Problems
14 Introduction to Phase and Chemical Equilibrium
	14.1 Requirements for Equilibrium
	14.2 Equilibrium Between Two Phases of a Pure Substance
	14.3 Metastable Equilibrium
	14.4 Chemical Equilibrium
	14.5 Simultaneous Reactions
	14.6 Coal Gasification
	14.7 Ionization
	14.8 Engineering Applications
	Key Concepts and Formulas
Chapter 15 Problems
15 Compressible Flow
	15.1 Stagnation Properties
	15.2 The Momentum Equation for a Control Volume
	15.3 Adiabatic, One-Dimensional, Steady-State Flow of an Incompressible Fluid Through a Nozzle
	15.4 Velocity of Sound in an Ideal Gas
	15.5 Reversible, Adiabatic, One-Dimensional Flow of an Ideal Gas Through a Nozzle
	15.6 Mass-Flow Rate of an Ideal Gas Through an Isentropic Nozzle
	15.7 Normal Shock in an Ideal Gas Flowing Through a Nozzle
	15.8 Nozzle and Diffuser Coefficients
	Key Concepts and Formulas
Contents of Appendix
Appendix A SI Units: Single-State Properties
Appendix B SI Units: Thermodynamic Tables
Appendix C Ideal Gas Specific Heat
Appendix D Equations of State
Appendix E Figures
Appendix F English Unit Tables
Index
EULA




نظرات کاربران