ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Fundamentals of Semiconductor Devices (2nd Edition)

دانلود کتاب مبانی دستگاه های نیمه هادی (ویرایش دوم)

Fundamentals of Semiconductor Devices (2nd Edition)

مشخصات کتاب

Fundamentals of Semiconductor Devices (2nd Edition)

ویرایش: 2 
نویسندگان:   
سری:  
ISBN (شابک) : 9780073529561 
ناشر:  
سال نشر:  
تعداد صفحات: 832 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 243 مگابایت 

قیمت کتاب (تومان) : 33,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Fundamentals of Semiconductor Devices (2nd Edition) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مبانی دستگاه های نیمه هادی (ویرایش دوم) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مبانی دستگاه های نیمه هادی (ویرایش دوم)

مبانی دستگاه های نیمه هادی روشی واقعی و عملی از دستگاه های نیمه هادی مدرن ارائه می دهد. درک کامل از فرآیندهای فیزیکی مسئول خواص الکترونیکی مواد و دستگاه های نیمه هادی تاکید شده است. با این تأکید، خواننده از فیزیک اساسی در پشت معادلات به دست آمده و دامنه کاربرد آنها قدردانی خواهد کرد. سبک نوشتاری واضح نویسنده، پوشش جامع مطالب اصلی و توجه به موضوعات جاری از نقاط قوت اصلی این کتاب است.


توضیحاتی درمورد کتاب به خارجی

Fundamentals of Semiconductor Devices provides a realistic and practical treatment of modern semiconductor devices. A solid understanding of the physical processes responsible for the electronic properties of semiconductor materials and devices is emphasized. With this emphasis, the reader will appreciate the underlying physics behind the equations derived and their range of applicability. The author’s clear writing style, comprehensive coverage of the core material, and attention to current topics are key strengths of this book.



فهرست مطالب

Cover
Fundamentals of Semiconductor Devices
Brief Contents
Contents
Preface
Acknowledgements
Part 1 Materials
	Chapter 1 Electron Energy and States inSemiconductors
		1.1 Introduction and Preview
		1.2 A Brief History
		1.3 Application to the Hydrogen Atom
			1.3.1 The Bohr Model for The Hydrogen Atom
			1.3.2 Application to Molecules: Covalent Bonding
			1.3.3 Quantum Numbers and the Pauli Exclusion Principle
			1.3.4 Covalent Bonding in Crystalline Solids
		1.4 Wave-Particle Duality
		1.5 The Wave Function
			1.5.1 Probability and the Wave Function
		1.6 The Electron Wave Function
			1.6.1 The Free Electron in One Dimension
			1.6.2 The De Broglie Relationship
			1.6.3 The Free Electron in Three Dimensions
			1.6.4 The Quasi-Free Electron Model
			1.6.5 Reflection and Tunneling
		1.7 A First Look at Optical Emission and Absorption
		1.8 Crystal Structures, Planes, and Directions
		1.9 Summary
		1.10 References
		1.11 Review Questions
		1.12 Problems
	Chapter 2 Homogeneous Semiconductors
		2.1 Introduction and Preview
		2.2 Pseudo-Classical Mechanics for Electrons in Crystals
			2.2.1 One-Dimensional Crystals
			2.2.2 Three-Dimensional Crystals
		2.3 Conduction Band Structure
		2.4 Valence Band Structure
		2.5 Intrinsic Semiconductors
		2.6 Extrinsic Semiconductors
			2.6.1 Donors
			2.6.2 Acceptors
		2.7 The Concept of Holes
			2.7.1 Hole Charge
		2.8 Effective Mass of Electrons and Holes
		2.9 Density-of-States Functions for Electrons inBands
			2.9.1 Density of States and Density-of-States Effective Mass
		2.10 Fermi-Dirac Statistics
			2.10.1 Fermi-Dirac Statistics for Electrons andHoles in Bands
		2.11 Electron and Hole Distributions with Energy
		2.12 Temperature Dependence of Carrier Concentrations in Nondegenerate Semiconductors
			2.12.1 Carrier Concentrations at High Temperatures
			2.12.2 Carrier Concentrations at Low Temperatures (Carrier Freeze-Out)
		2.13 Degenerate Semiconductors
			2.13.1 Impurity-Induced Band-Gap Narrowing
			2.13.2 Apparent Band-Gap Narrowing
		2.14 Summary
			2.14.1 Nondegenerate Semiconductors
			2.14.2 Degenerate Semiconductors
		2.15 References
		2.16 Review Questions
		2.17 Problems
	Chapter 3 Current Flow in Homogeneous Semiconductors
		3.1 Introduction
		3.2 Drift Current
		3.3 Carrier Mobility
			3.3.1 Carrier Scattering
			3.3.2 Scattering Mobility
			3.3.3 Impurity Band Mobility
			3.3.4 Temperature Dependence of Mobility
			3.3.5 High-Field Effects
		3.4 Diffusion Current
		3.5 Carrier Generation and Recombination
			3.5.1 Band-to-Band Generation and Recombination
			3.5.2 Two-Step Processes
		3.6 Optical Processes in Semiconductors
			3.6.1 Absorption
			3.6.2 Emission
		3.7 Continuity Equations
		3.8 Minority Carrier Lifetime
			3.8.1 Rise Time
			3.8.2 Fall Time
		3.9 Minority Carrier Diffusion Lengths
		3.10 Quasi Fermi Levels
		3.11 Summary
		3.12 References
		3.13 Review Questions
		3.14 Problems
	Chapter 4 Nonhomogeneous Semiconductors
		4.1 Constancy of The Fermi Level at Equilibrium
		4.2 Graded Doping
		4.3 Nonuniform Composition
		4.4 Graded Doping and Graded Composition Combined
		4.5 Summary
		4.6 References
		4.7 Review Questions
		4.8 Problems
	Supplement to Part 1 Introduction to Quantum Mechanics
		S1.1 Introduction
		S1.2 The Wave Function
		S1.3 Probability and the Wave Function
			S1.3.1 Particle in a One-Dimensional Potential Well
		S1.4 Schrödinger’s Equation
		S1.5 Applying Schrödinger’s Equation to Electrons
		S1.6 Some Results From Quantum Mechanics
			S1.6.1 The Free Electron
			S1.6.2 The Quasi-Free Electron
			S1.6.3 The Potential Energy Well
			S1.6.4 The Infinite Potential Well in One Dimension
			S1.6.5 Reflection and Transmission at a Finite Potential Barrier
			S1.6.6 Tunneling
			S1.6.7 The Finite Potential Well
			S1.6.8 The Hydrogen Atom Revisited
			S1.6.9 The Uncertainty Principle
		S1.7 Phonons
			S1.7.1 Carrier Scattering by Phonons
			S1.7.2 Indirect Electron Transitions
		S1.8 Summary
		S1.9 References
		S1.10 Review Questions
		S1.11 Problems
Part 2 Diodes
	Chapter 5 Prototype pn Homojunctions
		5.1 Introduction
		5.2 Prototype pn Junctions (Qualitative)
			5.2.1 Energy Band Diagrams of Prototype pnJunctions
			5.2.2 Description of Current Flow in a pn Prototype Homojunction
			5.2.3 Tunnel Diodes
		5.3 Prototype pn Homojunctions (Quantitative)
			5.3.1 Energy Band Diagram at Equilibrium (Step Junction)
			5.3.2 Energy Band Diagram with Applied Voltage
			5.3.3 Current-Voltage Characteristics of pn Homojunctions
			5.3.4 Reverse-Bias Breakdown
		5.4 Small-Signal Impedance of Prototype Homojunctions
			5.4.1 Junction (Differential) Resistance
			5.4.2 Junction (Differential) Capacitance
			5.4.3 Stored-Charge Capacitance
		5.5 Transient Effects
			5.5.1 Turn-Off Transient
			5.5.2 Turn-On Transient
		5.6 Effects of Temperature
		5.7 Summary
		5.8 Review Questions
		5.9 Problems
	Chapter 6 Additional Considerations for Diodes
		6.1 Introduction
		6.2 Nonstep Homojunctions
			6.2.1 Linearly Graded Junctions
			6.2.2 Hyperabrupt Junctions
		6.3 Semiconductor Heterojunctions
			6.3.1 The Energy Band Diagrams of Semiconductor–Semiconductor Heterojunctions
			6.3.2 Tunneling-Induced Dipoles
			6.3.3 Effects of Interface States
			6.3.4 Effects of Lattice Mismatch on Heterojunctions
		6.4 Metal-Semiconductor Junctions
			6.4.1 Ideal Metal-Semiconductor Junctions (Electron Affinity Model)
			6.4.2 Influence of Interface-Induced Dipoles
			6.4.3 The Current-Voltage Characteristics of Metal-Semiconductor Junctions
			6.4.4 Ohmic (Low-Resistance) Contacts
			6.4.5 I-Va Characteristics of Heterojunction Diodes
		6.5 Capacitance in Nonideal Junctions and Heterojunctions
		6.6 Summary
		6.7 References
		6.8 Review Questions
		6.9 Problems
	Supplement to Part 2 Diodes
		S2.1 Introduction
		S2.2 Dielectric Relaxation Time
			S2.2.1 Case 1: Dielectric Relaxation Time for MajorityCarriers
			S2.2.2 Case 2: Dielectric Relaxation Time for Minority Carriers
		S2.3 Junction Capacitance
			S2.3.1 Junction Capacitance in a Prototype (Step) Junction
			S2.3.2 Junction Capacitance in a Nonuniformly Doped Junction
			S2.3.3 Varactors
			S2.3.4 Stored-Charge Capacitance of Short-Base Diodes
		S2.4 Second-Order Effects in Schottky Diodes
			S2.4.1 Tunneling Through Schottky Barriers
			S2.4.2 Barrier Lowering in Schottky Diodes Due to The Image Effect
		S2.5 Summary
		S2.6 Review Questions
		S2.7 References
		S2.8 Problems
Part 3 Field-Effect Transistors
	The Generic FET
	Transistors in Circuits
	The Basis for Deriving the Id-Vds Characteristics of a FET
	Chapter 7 The MOSFET
		7.1 Introduction
		7.2 Mosfets (Qualitative)
			7.2.1 Introduction to Mos Capacitors
			7.2.2 MOS Capacitor Hybrid Diagrams
			7.2.3 MOSFETs at Equilibrium (Qualitative)
			7.2.4 MOSFETs Not at Equilibrium (Qualitative)
		7.3 Drift Model for MOSFETs (Quantitative)
			7.3.1 Long-Channel Drift MOSFET Model with Constant Channel Mobility
			7.3.2 More Realistic Long-Channel Models: Effect of Fields on the Mobility
			7.3.3 Series Resistance
		7.4 Comparison of Models with Experiment
		7.5 Ballistic Model for MOSFETs
		7.6 Some Short-Channel Effects
			7.6.1 Dependence of Effective Channel Length on Vds
			7.6.2 Dependence of Threshold Voltage on the Drain Voltage
		7.7 Subthreshold Leakage Current
		7.8 Summary
		7.9 References
		7.10 Review Questions
		7.11 Problems
	Chapter 8 Other Field-Effect Transistors
		8.1 Introduction
		8.2 Measurement of Threshold Voltage and Low-Field Mobility
		8.3 Complementary MOSFETs (CMOS)
			8.3.1 Operation of The CMOS Inverter
			8.3.2 Matching of CMOS Devices
		8.4 Switching in CMOS Inverter Circuits
			8.4.1 Effect of Load Capacitance
			8.4.2 Propagation (Gate) Delay in CMOS SwitchingCircuits
			8.4.3 Pass-Through Current in CMOS Switching
		8.5 Other MOSFETs
			8.5.1 Silicon on Insulator (SOI) MOSFETs
			8.5.2 FinFETs
			8.5.3 Nonvolatile MOSFETs
		8.6 Other FETS
			8.6.1 Heterojunction Field-Effect Transistors (HFETs)
			8.6.2 Metal-Semiconductor Field-Effect Transistors (MESFETs)
			8.6.3 Junction Field-Effect Transistors (JFETs)
			8.6.4 Tunnel Field-Effect Transistors (TFETs)
		8.7 Bulk Channel FETs: Quantitative
		8.8 Summary
		8.9 References
		8.10 Review Questions
		8.11 Problems
	Supplement to Part 3 Additional Consideration forMOSFETs
		S3.1 Introduction
		S3.2 Dependence of the Channel Charge Qch on the Longitudinal Field El
		S3.3 Threshold Voltage for MOSFETs
			S3.3.1 Fixed Charge
			S3.3.2 Interface Trapped Charge
			S3.3.3 Bulk Charge
			S3.3.4 Effect of Charges on the Threshold Voltage
			S3.3.5 Flat Band Voltage
			S3.3.6 Threshold Voltage Control
			S3.3.7 Channel Quantum Effects
		S3.4 MOSFET Analog Equivalent Circuit
			S3.4.1 Small-Signal Equivalent Circuit
			S3.4.2 CMOS Amplifiers
		S3.5 Unity Current Gain Cutoff FrequencyfT
		S3.6 MOS Capacitors
			S3.6.1 Ideal MOS Capacitance
			S3.6.2 The C-Vg Characteristics of Real MOS Capacitors
			S3.6.3 MOSFET Parameter Analyses from C-Vg Measurements
		S3.7 Dynamic Random-Access Memories (DRAMs)
		S3.8 MOSFET Scaling [6]
		S3.9 Device and Interconnect Degradation
			S3.9.1 MOSFET Integrated Circuit Reliability
		S3.10 Summary
		S3.11 References
		S3.12 Review Questions
		S3.13 Problems
Part 4 Bipolar Junction Transistors
	Chapter 9 Bipolar Junction Transistors: Statics
		9.1 Introduction
		9.2 Output Characteristics (Qualitative)
		9.3 Current Gain
		9.4 Model of a Prototype BJT
			9.4.1 Collection Efficiency M
			9.4.2 Injection Efficiency
			9.4.3 Base Transport Efficiency at
		9.5 Doping Gradients in BJTs
			9.5.1 The Graded-Base Transistor
			9.5.2 Effect of Base Field on B
		9.6 Heterojunction Bipolar Transistors (Hbts)
			9.6.1 Uniformly Doped HBT
			9.6.2 Graded-Composition HBT: (Si: SiGe-Base: Si HBTs)
			9.6.3 Double Heterojunction Bipolar Transistor, (DHBT)
		9.7 Comparison of Si-Base, SiGe-Base, and GaAs-Base HBTs
		9.8 The Basic Ebers-Moll dc Model
		9.9 Summary
		9.10 References
		9.11 Review Questions
		9.12 Problems
	Chapter 10 Time-Dependent Analysis ofBJTS
		10.1 Introduction
		10.2 Ebers-Moll ac Model
		10.3 Small-Signal Equivalent Circuits
			10.3.1 Hybrid-Pi Models
		10.4 Stored-Charge Capacitance in BJTs
		10.5 Frequency Response
			10.5.1 Unity Current Gain Frequency fT
			10.5.2 Base Transit Time tT
			10.5.3 Base-Collector Transit Time tBC
			10.5.4 Maximum Oscillation Frequency fmax
		10.6 High-Frequency Transistors
			10.6.1 Double Poly Si Self-Aligned Transistor
		10.7 BJT Switching Transistor
			10.7.1 Output Low-To-High Transition Time
			10.7.2 Schottky-Clamped Transistor
			10.7.3 Double Heterojunction Bipolar Transistor (DHBT)
		10.8 BJTs, MOSFETs, and BiMOS
			10.8.1 Comparison of BJTs and MOSFETs
			10.8.2 BiMOS
		10.9 Summary
		10.10 References
		10.11 Review Questions
		10.12 Problems
	Supplement to Part 4 Bipolar Devices
		S4.1 Introduction
		S4.2 Current Crowding and Base Resistance inBJTs
		S4.3 Base Width Modulation (Early Effect)
		S4.4 Avalanche Breakdown
		S4.5 High Injection
		S4.6 Base Push-Out (Kirk) Effect
		S4.7 Recombination in the Emitter-Base Junction
		S4.8 Offset Voltage in BJTs
		S4.9 Lateral Bipolar Transistors
		S4.10 Summary
		S4.11 References
		S4.12 Review Questions
		S4.13 Problems
Part 5 Optoelectronic and Power Semiconductor Devices
	Chapter 11 Optoelectronic Devices
		11.1 Introduction and Preview
		11.2 Photodetectors
			11.2.1 Generic Photodetector
			11.2.2 Solar Cells
			11.2.3 The pin (PIN) Photodetector
			11.2.4 Avalanche Photodiodes
		11.3 Light-Emitting Diodes
			11.3.1 Spontaneous Emission in a Forward-Biased Junction
			11.3.2 Blue, Utraviolet, and White LEDs
			11.3.3 Infrared LEDs
			11.3.4 White LEDs and Solid-State Lighting
		11.4 Laser Diodes
			11.4.1 Optical Gain
			11.4.2 Feedback
			11.4.3 Gain + Feedback = Laser
			11.4.4 Laser Structures
			11.4.5 Other Semiconductor Laser Materials
		11.5 Image Sensors (Imagers)
			11.5.1 Charge-Coupled Devices (CCDs)
			11.5.2 Linear Image Sensors
			11.5.3 Area Image Sensors
		11.6 Summary
		11.7 References
		11.8 Review Questions
		11.9 Problems
	Chapter 12 Power Semiconductor Devices
		12.1 Introduction and Preview
		12.2 Rectifying Diodes
			12.2.1 Junction Breakdown
			12.2.2 Specific On-Resistance
			12.2.3 Transient Losses
			12.2.4 Merged Pin-Schottky (MPS) Diodes
		12.3 Thyristors (npnp Switching Devices)
			12.3.1 The Four-Layer Diode Switch
			12.3.2 Two-Transistor Model of an npnp Switch
			12.3.3 Silicon-Controlled Rectifiers (SCRs)
			12.3.4 TRIAC
			12.3.5 Gate Turn-Off Thyristors (GTOs)
		12.4 The Power MOSFET
		12.5 The Insulated-Gate Bipolar Transistor
		12.6 Power MOSFET versus IGBT
		12.7 Summary
		12.8 References
		12.9 Review Questions
		12.10 Problems
Appendices
	Appendix A Constants
	Appendix B List of Symbols
	Appendix C Fabrication
		C.1 Introduction
			C.2 Substrate Preparation
				C.2.1 The Raw Material
				C.2.2 Crystal Growth
				C.2.3 Defects
				C.2.4 Epitaxy
			C.3 Doping
				C.3.1 Diffusion
				C.3.2 Ion Implantation
			C.4 Lithography
			C.5 Conductors and Insulators
				C.5.1 Metallization
				C.5.2 Poly Si
				C.5.3 Oxidation
				C.5.4 Silicon Nitride
			C.6 Silicon Oxynitride (SiOXNY or SiON)
			C.7 Clean Rooms
			C.8 Packaging
				C.8.1 Wire Bonding
				C.8.2 Lead Frame
				C.8.3 Surface-Mount Packages
			C.9 Summary
	Appendix D Some Useful Integrals
	Appendix E Useful Equations
		General Physics
		Semiconductor Materials
		Junctions
		Field-Effect Transistors
		Bipolar Junction Transistors
		Optoelectronic Devices
		Power Semiconductor Devices
Index




نظرات کاربران