ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Fundamentals of Renewable Energy Processes, Fourth Edition (Instructor's Edu Resource 1 of 2, Solution Manual) (Solutions) 4th Ed

دانلود کتاب مبانی فرآیندهای انرژی تجدیدپذیر، ویرایش چهارم (منبع آموزشی مربی 1 از 2، راهنمای راه حل) (راه حل ها) ویرایش چهارم

Fundamentals of Renewable Energy Processes,  Fourth  Edition (Instructor's Edu Resource 1 of 2, Solution Manual) (Solutions) 4th Ed

مشخصات کتاب

Fundamentals of Renewable Energy Processes, Fourth Edition (Instructor's Edu Resource 1 of 2, Solution Manual) (Solutions) 4th Ed

ویرایش: [4 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 0128160365, 9780128160367 
ناشر: Academic Press, A. P,  AP 
سال نشر: 2021 
تعداد صفحات:  
زبان: English 
فرمت فایل : 7Z (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 13 Mb 

قیمت کتاب (تومان) : 43,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 5


در صورت تبدیل فایل کتاب Fundamentals of Renewable Energy Processes, Fourth Edition (Instructor's Edu Resource 1 of 2, Solution Manual) (Solutions) 4th Ed به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مبانی فرآیندهای انرژی تجدیدپذیر، ویرایش چهارم (منبع آموزشی مربی 1 از 2، راهنمای راه حل) (راه حل ها) ویرایش چهارم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Front-Matter_2022_Fundamentals-of-Renewable-Energy-Processes
Copyright_2022_Fundamentals-of-Renewable-Energy-Processes
Dedication_2022_Fundamentals-of-Renewable-Energy-Processes
Contents_2022_Fundamentals-of-Renewable-Energy-Processes
	Contents
Preface_2022_Fundamentals-of-Renewable-Energy-Processes
	Preface
Acknowledgments_2022_Fundamentals-of-Renewable-Energy-Processes
	Acknowledgments
Chapter-1---Introduction_2022_Fundamentals-of-Renewable-Energy-Processes
	1 Introduction
		1.1 Units and Constants
		1.2 Energy and Utility
		1.3 Conservation of Energy
		1.4 Planetary Energy Balance
		1.5 The Energy Utilization Rate
		1.6 The Population Growth
		1.7 Water Usage
		1.8 The Market Penetration Function
		1.9 Planetary Energy Resources
			1.9.1 Mineral and Fossil Assets
		1.10 Energy Utilization
		1.11 The Efficiency Question
		1.12 The Ecology Question—CO2 Emission and Concentrations
			1.12.1 Biological
			1.12.2 Mineral
			1.12.3 Subterranean
			1.12.4 Oceanic
		1.13 Other Greenhouse Gases
		1.14 Financing
		1.15 The Cost of Electricity
		Problems
		References
Chapter-2---A-Minimum-of-Thermodynamics-and-o_2022_Fundamentals-of-Renewable
	2 A Minimum of Thermodynamics and of the Kinetic Theory of Gases
		2.1 The Motion of Molecules
			2.1.1 Temperature
			2.1.2 The Ideal Gas Law
			2.1.3 Internal Energy
			2.1.4 Specific Heat at Constant Volume
			2.1.5 The Pressure-Volume Work
			2.1.6 Specific Heat at Constant Pressure
			2.1.7 Degrees of Freedom
		2.2 Thermodynamic System, State, Properties, and Process
		2.3 The First Law of Thermodynamics
		2.4 Manipulating Confined Gases (Closed Systems)
			2.4.1 Adiabatic Processes
				2.4.1.1 Abrupt Compression
				2.4.1.2 Gradual Compression
				2.4.1.3 p-V Diagrams
				2.4.1.4 Polytropic Law
				2.4.1.5 Work Done Under Adiabatic Expansion (Closed System)
			2.4.2 Isothermal Processes
				2.4.2.1 Functions of State
		2.5 Manipulating Flowing Gases (Open Systems)
			2.5.1 Enthalpy
			2.5.2 Turbines
		2.6 Entropy and Irreversible Processes
			2.6.1 Isentropic Processes
			2.6.2 The Second Law of Thermodynamics
			2.6.3 Changes in Internal Energy, Enthalpy, and Entropy
			2.6.4 Reversibility
			2.6.5 Causes of Irreversibility
				2.6.5.1 Friction
				2.6.5.2 Heat Transfer Across Temperature Differences
				2.6.5.3 Unrestrained Compression, Expansion of a Gas
			2.6.6 Exergy and Negentropy
		2.7 Exergy Analysis and Thermodynamic Optimization
		2.8 Distribution Functions
			2.8.1 How to Plot Statistics
			2.8.2 Maxwellian Distribution
			2.8.3 Fermi–Dirac Distribution
		2.9 Boltzmann's Law
		2.10 Phases of a Pure Substance
		Problems
		References
Chapter-3---Mechanical-Heat-Engi_2022_Fundamentals-of-Renewable-Energy-Proce
	3 Mechanical Heat Engines
		3.1 Heats of Combustion
		3.2 Carnot Efficiency
			3.2.1 Using the T-s Diagram
		3.3 Engine Types
			3.3.1 Closed and Open Configurations
			3.3.2 Heat Sources
			3.3.3 Working Fluids
			3.3.4 Compressor Types
			3.3.5 Hardware Specificity
			3.3.6 Type of Combustion and Ignition
			3.3.7 Future Outlook
		3.4 Four and Two Stroke Engines
		3.5 The Otto Engine
			3.5.1 The Efficiency of an Otto Engine
			3.5.2 Improving the Efficiency of the Otto Engine
		3.6 The Diesel Cycle
		3.7 Gasoline
			3.7.1 Heat of Combustion
			3.7.2 Antiknock Characteristics
		3.8 Knocking
		3.9 Rankine Cycle
			3.9.1 The Boiling of Water
			3.9.2 Condenser and Pump
			3.9.3 The Steam Engine – Steam Turbine
			3.9.4 Increasing the Efficiency
			3.9.5 And Now?
		3.10 The Brayton Cycle
		3.11 Combined Cycles
		3.12 Hybrid Engines for Automobiles
		3.13 The Stirling Engine
			3.13.1 The Kinematic Stirling Engine
				3.13.1.1 The Alpha Stirling Engine
					Process 0 –>1 (Isothermal Compression)
					Process 1 –>2 (Gas Transfer, Followed by Isometric Heat Addition)
					Process 2 –>3 (Isothermal Expansion)
					Process 3 –>0 (Isometric Heat Rejection)
				3.13.1.2 The Beta Stirling Engine
				3.13.1.3 The Implementation of the Kinematic Stirling
			3.13.2 The Free Piston Stirling Engine
			3.13.3 Power Cycles Summary
		Problems
		References
Chapter-4---Ocean-Thermal-Energy-Con_2022_Fundamentals-of-Renewable-Energy-P
	4 Ocean Thermal Energy Converters
		4.1 Introduction
			4.1.1 Ocean Temperature Profile
		4.2 OTEC Configurations
			4.2.1 OTEC Using Hydraulic Turbines
			4.2.2 OTEC Using Vapor Turbines
		4.3 OTEC Efficiency
		4.4 Power Output and Volumetric Flow Rate
		4.5 Worldwide OTEC Resources
		4.6 An OTEC Design
		4.7 Heat Exchangers
		4.8 Siting
		Problems
		References
Chapter-5---Thermoelectricity_2022_Fundamentals-of-Renewable-Energy-Processe
	5 Thermoelectricity
		5.1 Experimental Observations
		5.2 Some Applications of Thermoelectric Generators
			5.2.1 The Thermoelectric Generator
			5.2.2 Design of a Thermoelectric Generator
			5.2.3 Radioisotope Thermoelectric Generators
		5.3 Thermoelectric Refrigerators and Heat Pumps
			5.3.1 Design Using an Existing Thermocouple
			5.3.2 Design Based on Given Semiconductors
		5.4 Directions and Signs
		5.5 Thermoelectric Thermometers
		5.6 Figure of Merit of a Material
		5.7 The Wiedemann–Franz–Lorenz Law
		5.8 Thermal Conductivity in Solids
		5.9 Seebeck Coefficient of Semiconductors
		5.10 Performance of Thermoelectric Materials
		5.11 Temperature Dependence
		5.12 Battery Architecture
		5.13 The Physics of Thermoelectricity
			5.13.1 The Seebeck Effect
			5.13.2 The Peltier Effect
			5.13.3 The Thomson Effect
			5.13.4 Kelvin's Relations
		Problems
		References
Chapter-6---Thermionics_2022_Fundamentals-of-Renewable-Energy-Processes
	6 Thermionics
		6.1 Introduction
		6.2 Thermionic Emission
		6.3 Electron Transport
			6.3.1 The Child–Langmuir Law
		6.4 Lossless Diodes With Space Charge Neutralization
			6.4.1 Interelectrode Potentials
			6.4.2 V-J Characteristics
			6.4.3 The Open-Circuit Voltage
			6.4.4 Maximum Power Output
		6.5 Losses in Vacuum Diodes With No Space Charge
			6.5.1 Efficiency
			6.5.2 Radiation Losses
				6.5.2.1 Radiation of Heat
				6.5.2.2 Efficiency With Radiation Losses Only
			6.5.3 Excess Electron Energy
			6.5.4 Heat Conduction
			6.5.5 Lead Resistance
		6.6 Real Vacuum Diodes
		6.7 Vapor Diodes
			6.7.1 Cesium Adsorption
			6.7.2 Contact Ionization
			6.7.3 Thermionic Ion Emission
			6.7.4 Space Charge Neutralization Conditions
			6.7.5 More V-J Characteristics
		6.8 High Pressure Diodes
		Problems
		References
Chapter-7---AMTEC-----Much-of-this-chapter-is-b_2022_Fundamentals-of-Renewab
	7 AMTEC
		7.1 Introduction
		7.2 Operating Principle
		7.3 Vapor Pressure
		7.4 Pressure Drop in the Sodium Vapor Column
		7.5 Mean Free Path of Sodium Ions
		7.6 V-I Characteristics of an AMTEC
		7.7 Efficiency
		7.8 Thermodynamics of an AMTEC
		Problems
		References
Chapter-8---Radio-Noise-Generato_2022_Fundamentals-of-Renewable-Energy-Proce
	8 Radio-Noise Generators
		8.1 Introduction
		8.2 Operation
		References
Chapter-9---Fuel-Cells_2022_Fundamentals-of-Renewable-Energy-Processes
	9 Fuel Cells
		9.1 Introduction
		9.2 Voltaic Cells
		9.3 Fuel Cell Classification
			9.3.1 Temperature of Operation
			9.3.2 State of the Electrolyte
			9.3.3 Type of Fuel
			9.3.4 Chemical Nature of the Electrolyte
		9.4 Fuel Cell Reactions
			9.4.1 Alkaline Electrolytes
			9.4.2 Acid Electrolytes
			9.4.3 Molten Carbonate Electrolytes
			9.4.4 Ceramic Electrolytes
			9.4.5 Methanol Fuel Cells
			9.4.6 Formic Acid Fuel Cells
		9.5 Typical Fuel Cell Configurations
			9.5.1 Demonstration Fuel Cell (KOH)
			9.5.2 Phosphoric Acid Fuel Cells (PAFCs)
				9.5.2.1 A Fuel Cell Battery (Engelhard)
				9.5.2.2 First-Generation Fuel Cell Power Plant
			9.5.3 Molten Carbonate Fuel Cells (MCFCs)
				9.5.3.1 Second-Generation Fuel Cell Power Plant
			9.5.4 Ceramic Fuel Cells (SOFCs)
				9.5.4.1 Third-Generation Fuel Cell Power Plant
				9.5.4.2 High Temperature Ceramic Fuel Cells
				9.5.4.3 Low Temperature Ceramic Fuel Cells
			9.5.5 Solid Polymer Electrolyte Fuel Cells—PEMs
				9.5.5.1 Cell Construction
					9.5.5.1.1 Membrane
					9.5.5.1.2 Catalysts
					9.5.5.1.3 Water Management
			9.5.6 Direct Methanol Fuel Cells
			9.5.7 Direct Formic Acid Fuel Cells (DFAFCs)
			9.5.8 Solid Acid Fuel Cells (SAFCs)
			9.5.9 Metallic Fuel Cells—Zinc-Air Fuel Cells
			9.5.10 Microbial Fuel Cells
		9.6 Fuel Cell Applications
			9.6.1 Stationary Power Plants
			9.6.2 Automotive Power Plants
			9.6.3 Other Applications
		9.7 The Thermodynamics of Fuel Cells
			9.7.1 Heat of Combustion
			9.7.2 Free Energy
			9.7.3 Efficiency of Reversible Fuel Cells
			9.7.4 Effects of Pressure and Temperature on the Enthalpy and Free Energy Changes of a Reaction
				9.7.4.1 Enthalpy Dependence on Temperature
				9.7.4.2 Enthalpy Dependence on Pressure
				9.7.4.3 Free Energy Dependence on Temperature
				9.7.4.4 Free Energy Dependence on Pressure
				9.7.4.5 The Nernst Equation
				9.7.4.6 Voltage Dependence on Temperature
		9.8 Performance of Real Fuel Cells
			9.8.1 Current Delivered by a Fuel Cell
			9.8.2 Rates of Species Consumption and Production
			9.8.3 Efficiency of Practical Fuel Cells
			9.8.4 V-I Characteristics of Fuel Cells
				9.8.4.1 Empirically Derived Characteristics
				9.8.4.2 Scaling Fuel Cells
				9.8.4.3 More Complete Empirical Characteristics of Fuel Cells
			9.8.5 Open-Circuit Voltage
			9.8.6 Reaction Kinetics
				9.8.6.1 Reaction Rates
				9.8.6.2 Activation Energy
				9.8.6.3 Catalysis
			9.8.7 The Butler–Volmer Equation
				9.8.7.1 Exchange Currents
			9.8.8 Transport Losses
			9.8.9 Heat Dissipation by Fuel Cells
				9.8.9.1 Heat Removal From Fuel Cells
		9.9 Appendix: Specific Heats of H2, O2, and H2O
		Problems
		References
Chapter-10---Hydrogen-Productio_2022_Fundamentals-of-Renewable-Energy-Proces
	10 Hydrogen Production
		10.1 Generalities
		10.2 Chemical Production of Hydrogen
			10.2.1 History
			10.2.2 Metal-Water Hydrogen Production
			10.2.3 Large-Scale Hydrogen Production
				10.2.3.1 Partial Oxidation
				10.2.3.2 Steam Reforming
				10.2.3.3 Thermal Decomposition
				10.2.3.4 Syngas
				10.2.3.5 Shift Reaction
				10.2.3.6 Methanation
				10.2.3.7 Methanol
				10.2.3.8 Syncrude
			10.2.4 Hydrogen Purification
				10.2.4.1 Desulfurization
				10.2.4.2 CO2 Removal
				10.2.4.3 CO Removal and Hydrogen Extraction
				10.2.4.4 Hydrogen Production Plants
			10.2.5 Compact Fuel Processors
				10.2.5.1 Formic Acid
		10.3 Electrolytic Hydrogen
			10.3.1 Introduction
			10.3.2 Electrolyzer Configurations
				10.3.2.1 Liquid Electrolyte Electrolyzers
				10.3.2.2 Solid Polymer Electrolyte Electrolyzers
				10.3.2.3 Ceramic Electrolyte Electrolyzers
				10.3.2.4 High Efficiency Steam Electrolyzers
			10.3.3 Efficiency of Electrolyzers
			10.3.4 Concentration-Differential Electrolyzers
			10.3.5 Electrolytic Hydrogen Compression
		10.4 Thermolytic Hydrogen
			10.4.1 Direct Dissociation of Water
			10.4.2 Chemical Dissociation of Water
				10.4.2.1 Mercury-Hydrobromic Acid Cycle
				10.4.2.2 Barium Chromate Cycle
				10.4.2.3 Sulfur-Iodine Cycle
		10.5 Photolytic Hydrogen
			10.5.1 Generalities
			10.5.2 Solar Photolysis
		10.6 Photobiologic Hydrogen Production
		10.7 Target Cost
		Problems
		References
Chapter-11---Hydrogen-Storage_2022_Fundamentals-of-Renewable-Energy-Processe
	11 Hydrogen Storage
		11.1 Introduction
			11.1.1 DOE Targets for Automotive Hydrogen Storage
		11.2 Compressed Gas
		11.3 Cryogenic Hydrogen
		11.4 Storage of Hydrogen by Adsorption
		11.5 Storage of Hydrogen in Chemical Compounds
			11.5.1 Generalities
			11.5.2 Hydrogen Carriers
			11.5.3 Water Plus a Reducing Substance
			11.5.4 Formic Acid
			11.5.5 Metal Hydrides
				11.5.5.1 Characteristics of Hydride Materials
					11.5.5.1.1 Plateau Slope
					11.5.5.1.2 Sorption Hysteresis
					11.5.5.1.3 Usable Capacity
					11.5.5.1.4 Heat Capacity
					11.5.5.1.5 Plateau Pressure Dependence on Temperature
				11.5.5.2 Thermodynamics of Hydride Systems
		11.6 Hydride Hydrogen Compressors
		11.7 Hydride Heat Pumps
		Problems
		References
Chapter-12---Solar-Radiation_2022_Fundamentals-of-Renewable-Energy-Processes
	12 Solar Radiation
		12.1 The Nature of Solar Radiation
		12.2 Irradiance
			12.2.1 Generalities
			12.2.2 Irradiance on a Sun-Tracking Surface
			12.2.3 Irradiance on a Stationary Surface
			12.2.4 Horizontal Surfaces
		12.3 Solar Collectors
			12.3.1 Solar Architecture
				12.3.1.1 Exposure Control
				12.3.1.2 Thermal Energy Storage
				12.3.1.3 Circulation
				12.3.1.4 Insulation
			12.3.2 Flat Collectors
			12.3.3 Evacuated Tubes
			12.3.4 Concentrators
				12.3.4.1 Holographic Plates
				12.3.4.2 Nonimaging Concentrators
				12.3.4.3 Common Concentration Systems for Power Generation
		12.4 Some Solar Plant Configurations
			12.4.1 High Temperature Solar Heat Engine
			12.4.2 Solar Tower (Solar Chimney)
			12.4.3 Solar Ponds
		12.5 Time Corrections
			12.5.1 Time Zones
			12.5.2 Time Offset
		12.6 Appendix I: The Measurement of Time
			12.6.1 How Long Is an Hour?
			12.6.2 The Calendar
			12.6.3 The Julian Day Number
		12.7 Appendix II: Orbital Mechanics
			12.7.1 Sidereal Versus Solar
			12.7.2 Orbital Equation
			12.7.3 Relationship Between Ecliptic and Equatorial Coordinates
			12.7.4 The Equation of Time
			12.7.5 Orbital Eccentricity
			12.7.6 Orbital Obliquity
			12.7.7 Further Reading
		Problems
		References
Chapter-13---Biomass_2022_Fundamentals-of-Renewable-Energy-Processes
	13 Biomass
		13.1 Introduction
		13.2 The Composition of Biomass
		13.3 Biomass as Fuel
			13.3.1 Wood Gasifiers
			13.3.2 Ethanol
				13.3.2.1 Ethanol Production
				13.3.2.2 Fermentation
				13.3.2.3 Ethanol From Corn
				13.3.2.4 Drawback of Ethanol
			13.3.3 Dissociated Alcohols
			13.3.4 Anaerobic Digestion
		13.4 Photosynthesis
		13.5 Microalgae
		13.6 A Little Bit of Organic Chemistry
			13.6.1 Hydrocarbons
			13.6.2 Oxidation Stages of Hydrocarbons
			13.6.3 Esters
			13.6.4 Saponification
			13.6.5 Waxes
			13.6.6 Carbohydrates
			13.6.7 Heterocycles
		Problems
		References
Chapter-14---Photovoltaic-Convert_2022_Fundamentals-of-Renewable-Energy-Proc
	14 Photovoltaic Converters
		14.1 Introduction
		14.2 Building Techniques
		14.3 Overview of Semiconductors
		14.4 Basic Operation
		14.5 Theoretical Efficiency
		14.6 Carrier Multiplication
		14.7 Spectrally Selective Beam Splitting
			14.7.1 Cascaded Cells
				14.7.1.1 Multiband Semiconductors
			14.7.2 Filtered Cells
			14.7.3 Holographic Concentrators
		14.8 Thermophotovoltaic Cells
		14.9 The Ideal and the Practical
		14.10 Solid State Junction Photodiode
			14.10.1 Effect of Light Power Density on Efficiency
			14.10.2 Effect of Reverse Saturation Current
			14.10.3 Effect of Operating Temperature on Efficiency
			14.10.4 Effect of Load on Efficiency
		14.11 The Reverse Saturation Current
		14.12 Practical Efficiency
		14.13 Dye-Sensitized Solar Cells (DSSCs)
		14.14 Organic Photovoltaic Cells (OPCs)
			14.14.1 Conducting Polymers
				14.14.1.1 Band Structure in Inorganic Semiconductors
			14.14.2 Polymer Solar Cells
		14.15 Perovskite Solar Cells
		14.16 Optical Rectennas
		14.17 Solar Power Satellite
			14.17.1 Beam From Space
			14.17.2 Solar Energy to DC Conversion
			14.17.3 Microwave Generation
			14.17.4 Radiation System
			14.17.5 Receiving Array
			14.17.6 Attitude and Orbital Control
			14.17.7 Space Transportation and Space Construction
			14.17.8 Future of Space Solar Power Projects
		Appendix A: Values of Two Definite Integrals Used in the Calculation of Photodiode Performance
		Problems
		References
Chapter-15---Wind-Energy_2022_Fundamentals-of-Renewable-Energy-Processes
	15 Wind Energy
		15.1 History
		15.2 Wind Machine Configurations
			15.2.1 Drag-Type Wind Turbines
			15.2.2 Lift-Type Wind Turbines
			15.2.3 Magnus Effect Wind Machines
			15.2.4 Vortex Wind Machines
		15.3 Measuring the Wind
			15.3.1 The Rayleigh Distribution
			15.3.2 The Weibull Distribution
		15.4 Availability of Wind Energy
		15.5 Wind Turbine Characteristics
		15.6 Principles of Aerodynamics
			15.6.1 Flux
			15.6.2 Power in the Wind
			15.6.3 Dynamic Pressure
			15.6.4 Wind Pressure
			15.6.5 Available Power (Betz Limit)
				15.6.5.1 The Rankine–Froude Theorem
			15.6.6 Efficiency of a Wind Turbine
				15.6.6.1 Solidity
				15.6.6.2 Wake Rotation
				15.6.6.3 Other Losses
		15.7 Airfoils
		15.8 Reynolds Number
		15.9 Aspect Ratio
		15.10 Wind Turbine Analysis
			15.10.1 Horizontal Axis Turbines (Propeller Type)
			15.10.2 Vertical Axis Turbines
				15.10.2.1 Aspect Ratio (of a Wind Turbine)
				15.10.2.2 Centrifugal Force
				15.10.2.3 Performance Calculation
		15.11 Magnus Effect
		15.12 Computational Tools and Other Resources
		Problems
		References
Chapter-16---Ocean-Engines_2022_Fundamentals-of-Renewable-Energy-Processes
	16 Ocean Engines
		16.1 Wave Energy
			16.1.1 About Ocean Waves – Terminology
			16.1.2 The Velocity of Ocean Waves
			16.1.3 Wave Height
			16.1.4 Energy and Power in a Wave
			16.1.5 Wave Energy Converters
				16.1.5.1 Offshore Wave Energy Converters
				16.1.5.2 Heaving Buoy Converters
				16.1.5.3 Hinged Contour Converters
				16.1.5.4 Overtopping Converters
				16.1.5.5 Shoreline Wave Energy Converters
				16.1.5.6 Tapered Channel System
				16.1.5.7 Oscillating Water Column (OWC)—Wavegen System
		16.2 Tidal Energy
			16.2.1 The Nature of Tides
			16.2.2 Energy and Power in Tides
			16.2.3 Tidal Energy Converters
		16.3 Energy From Currents
			16.3.1 Marine Current Turbine System
				16.3.1.1 Horizontal Forces
				16.3.1.2 Anchoring Systems
				16.3.1.3 Corrosion and Biological Fouling
				16.3.1.4 Cavitation
				16.3.1.5 Large Torque
				16.3.1.6 Maintenance
				16.3.1.7 Power Transmission
				16.3.1.8 Turbine Farms
				16.3.1.9 Ecology
				16.3.1.10 Modularity
		16.4 Salination Energy
		16.5 Osmosis
		16.6 Further Reading
		Problems
		References
Chapter-17---Nuclear-Energy_2022_Fundamentals-of-Renewable-Energy-Processes
	17 Nuclear Energy
		17.1 Introduction
		17.2 Fission Reactors
			17.2.1 Generations of Nuclear Fission Reactors
			17.2.2 Nomenclature and Units
			17.2.3 Fission – How Current Reactors Work
				17.2.3.1 Heavy-Metal Fast Breeder Reactor
				17.2.3.2 High Temperature Gas Reactors (HTGRs)
		17.3 Fusion Reactors
			17.3.1 Magnetic Confinement
				17.3.1.1 Pinch Instability
			17.3.2 Inertial Confinement
		Problems
		References
Chapter-18---Storage-of-Energy_2022_Fundamentals-of-Renewable-Energy-Process
	18 Storage of Energy
		18.1 Generalities
			18.1.1 Ragone Plot
		18.2 Electrochemical Storage (Batteries)
			18.2.1 Introduction
			18.2.2 Capacity
			18.2.3 The Chemistry of Some Batteries
				18.2.3.1 What All Batteries Have in Common
				18.2.3.2 Primary Batteries
				18.2.3.3 Secondary Batteries
		18.3 Capacitive Storage
			18.3.1 Capacitors
			18.3.2 Supercapacitors
			18.3.3 Hybrid Capacitors
			18.3.4 Using Capacitors for Energy Storage
				18.3.4.1 Discharging Capacitors
				18.3.4.2 Interconnecting Capacitors
		18.4 Flywheels and Pumped Storage
			18.4.1 Kinetic Energy Storage
			18.4.2 Gravitational Potential Energy Storage
		18.5 Thermal Energy Storage
		Problems
		References
Index_2022_Fundamentals-of-Renewable-Energy-Processes
	Index




نظرات کاربران