ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Fundamentals of Process Safety Engineering

دانلود کتاب مبانی مهندسی ایمنی فرآیند

Fundamentals of Process Safety Engineering

مشخصات کتاب

Fundamentals of Process Safety Engineering

ویرایش: [1 ed.] 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 0367620766, 9780367620769 
ناشر: CRC Press 
سال نشر: 2021 
تعداد صفحات: 498
[499] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 9 Mb 

قیمت کتاب (تومان) : 51,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Fundamentals of Process Safety Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مبانی مهندسی ایمنی فرآیند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مبانی مهندسی ایمنی فرآیند




توضیحاتی درمورد کتاب به خارجی

This textbook comprehensively covers several technical aspects of process safety engineering. It provides readers with an understanding of hazards in process plants and how to manage in a safe and professional manner. The text covers important concepts including static electricity, modeling for radiation intensity, thermodynamics of fluid phase equilibria, intensity of thermal radiation, boiling liquid expanding vapor explosion (BLEVE), emission source models, computational fluid dynamics and hazard identification methods. Case studies are included in the textbook. Aimed at senior undergraduate and graduate students in the field of chemical engineering for courses on process safety engineering/process safety, this book: Discusses fundamentals, methods, and procedures for the industrial practice of Process Safety Engineering. Covers thermodynamic basis for computing release rates from ruptures in pipelines or vessels and relief valves. Discusses static electricity hazards in a comprehensive and authoritative manner, with examples. Examines industrial fires and explosions, dispersion of toxic and flammable gases and vapours. Discusses methods of qualitative and quantitative risk assessment and control in detail.



فهرست مطالب

Cover
Half Title
Title Page
Copyright Page
Table of Contents
Foreword
Preface
Acknowledgments
List of Figures
List of Tables
Acronyms and Abbreviations
Authors
Chapter 1 Hazards in the Process Industries
	1.1 Chemical Hazards
		1.1.1 Flammable Chemicals
		1.1.2 Explosive Chemicals
		1.1.3 Reactive Chemicals
		1.1.4 Toxic Chemicals
	1.2 Physical Hazards
		1.2.1 Physical Explosion
		1.2.2 Electrostatic Charges
		1.2.3 Rollover/Boilover of Liquids
	1.3 Environmental Hazards
		1.3.1 Air Pollutants
		1.3.2 Water Pollutants
		1.3.3 Solid Wastes
	1.4 Other Hazards
		1.4.1 Electricity
		1.4.2 Hazards in Maintenance Work
	1.5 Classification Categories and Labeling of Hazardous Chemicals
		1.5.1 Globally Harmonized System (GHS)
		1.5.2 Adoption of GHS by Countries
	1.6 Provision of Hazard Information
		1.6.1 Safety Data Sheets (SDS)
	Reference
Chapter 2 Overview of Some Major Accidents in the World
	2.1 Cleveland, Ohio
		2.1.1 Brief Description of Facility and Process
		2.1.2 The Accident
		2.1.3 Causes, Circumstances, and Consequences
		2.1.4 Lessons/Recommendations
	2.2 Feyzin, France
		2.2.1 Brief Description of Facility and Process
		2.2.2 The Accident
		2.2.3 Causes, Circumstances, and Consequences
		2.2.4 Lessons/Recommendations
	2.3 Flixborough, UK
		2.3.1 Brief Description of Facility and Process
		2.3.2 The Accident
		2.3.3 Causes, Circumstances, and Consequences
		2.3.4 Lessons/Recommendations
	2.4 Seveso, Italy
		2.4.1 Brief Description of Facility and Process
		2.4.2 The Accident
		2.4.3 Causes, Circumstances, and Consequences
		2.4.4 Lessons/Recommendations
	2.5 Qatar, Persian Gulf
		2.5.1 Brief Description of Facility and Process
		2.5.2 The Accident
		2.5.3 Causes, Circumstances, and Consequences
		2.5.4 Lessons/Recommendations
	2.6 Caracas, Venezuela
		2.6.1 Brief Description of Facilities and Process
		2.6.2 The Accident
		2.6.3 Causes, Circumstances, and Consequences
		2.6.4 Lessons/Recommendations
	2.7 Mexico City
		2.7.1 Brief Description of Facility and Process
		2.7.2 The Accident
		2.7.3 Causes, Circumstances, and Consequences
		2.7.4 Lessons/Recommendations
	2.8 Bhopal, India
		2.8.1 Brief Description of Facilities and Process
		2.8.2 The Accident
		2.8.3 Causes, Circumstances, and Consequences
		2.8.4 Lessons/Recommendations
	2.9 Offshore Oil Rig Piper Alpha, North Sea
		2.9.1 Brief Description of Facility and Process
		2.9.2 The Accident
		2.9.3 Causes, Circumstances, and Consequences
		2.9.4 Lessons/Recommendations
	2.10 Bharat Petroleum Refinery, Bombay, India
		2.10.1 Description of Facility and Process
		2.10.2 The Accident
		2.10.3 Causes, Circumstances, and Consequences
		2.10.4 Lessons/Recommendations
	2.11 Petrochemical Complex, Phillips Petroleum, Pasadena, USA
		2.11.1 Brief Description of Facility and Processes
		2.11.2 The Accident
		2.11.3 Causes, Circumstances, and Consequences
		2.11.4 Lessons/Recommendations
	2.12 LPG Import Terminal Hindustan Petroleum, Vishakhapatnam, India
		2.12.1 Brief Description of the Facility and the Process
		2.12.2 The Accident
		2.12.3 Causes, Circumstances, and Consequences
		2.12.4 Lessons/Recommendations
	2.13 Grande Paroisse, Ammonium Nitrate Facility Toulouse, France
		2.13.1 Brief Description of Facility and Process
		2.13.2 The Accident
		2.13.3 Causes, Circumstances, and Consequences of the Accident
		2.13.4 Lessons/Recommendations
	2.14 Space Shuttle Columbia, NASA Florida
		2.14.1 Brief Description of Space Program and the Shuttle
		2.14.2 The Accident
		2.14.3 Causes, Circumstances, and Consequences
		2.14.4 Lessons/Recommendations
	2.15 LNG Liquefaction Facility, Skikda, Algeria
		2.15.1 Brief Description of Facility and the Process
		2.15.2 The Accident
		2.15.3 Causes, Circumstances, and Consequences
		2.15.4 Lessons/Recommendations
	2.16 BP Refinery, Texas City, Texas, USA
		2.16.1 Brief Description of Facility and Process
		2.16.2 The Accident
		2.16.3 Causes, Circumstances, and Consequences of the Accident
		2.16.4 Lessons/Recommendations
	2.17 Imperial Sugar, Port Wentworth, Georgia, USA
		2.17.1 Brief Description of Facility and Process
		2.17.2 The Accident
		2.17.3 Causes, Circumstances, and Consequences
		2.17.4 Lessons/Recommendations
	2.18 Indian Oil Corporation Product Tank Farm, Jaipur, Rajasthan, India
		2.18.1 Description of Facility and Process
		2.18.2 The Accident
		2.18.3 Causes, Circumstances, and Consequences
		2.18.4 Lessons/Recommendations
	2.19 BP Deepwater Horizon Offshore Rig
		2.19.1 Description of Facility and Process
		2.19.2 The Accident
		2.19.3 Causes, Circumstances, and Consequences
		2.19.4 Lessons/Recommendations
	2.20 Summary and Conclusions
	References
Chapter 3 Fundamentals of Fire Processes
	3.1 How Fire Starts
		3.1.1 Flammability Limits
			3.1.1.1 Pure Fuels
			3.1.1.2 Dependence of LFL and UFL on Pressure and Temperature
			3.1.1.3 Mixture of Fuels in Air
			3.1.1.4 Flammability Range in Oxygen
			3.1.1.5 Effect of Addition of Inert Gases
		3.1.2 Flash Point
		3.1.3 Fire Point
	3.2 Heat Balance in Flames
	3.3 Types of Flames
		3.3.1 Premixed and Diffusion Flames
		3.3.2 Pool Fire
		3.3.3 Jet Fire
		3.3.4 Vapor Cloud Fire
		3.3.5 Fireball
	3.4 Ignition
		3.4.1 Requirements and Characteristics of Ignition Sources
		3.4.2 Hot Work
		3.4.3 Electrical Equipment
		3.4.4 Static Electricity
	3.5 Effect of Thermal Radiation
		3.5.1 Effect on the Human Body
		3.5.2 Effect on Plant and Machinery
	3.6 Fire Prevention Systems
		3.6.1 Good Housekeeping
		3.6.2 Control of Flammable Materials
		3.6.3 Control of Sources of Ignition
		3.6.4 Fire Hazards Awareness
		3.6.5 Monitoring
	3.7 Fire Protection Systems
		3.7.1 Passive Fire Protection
		3.7.2 Active Fire Protection
			3.7.2.1 Detection of Flammable Material
			3.7.2.2 Detection of Fire
			3.7.2.3 Cooling by Water
			3.7.2.4 Fire Extinguishing
			3.7.2.5 Fire fighting Plan
	References
Chapter 4 Static Electricity
	4.1 Historical Background of Static Electricity
	4.2 Basic Concepts of Static Electricity
	4.3 Conductors and Insulators
		4.3.1 Liquids
		4.3.2 Solids
	4.4 Generation of Electrostatic Charge
		4.4.1 Mechanisms of Charge Generation
			4.4.1.1 Relative Movement at Material Interfaces
			4.4.1.2 Induction
			4.4.1.3 Charge Transfer
		4.4.2 Quantitative Relationships for Charge Generation
			4.4.2.1 Charge Generation on Liquids
			4.4.2.2 Charge Generation in Powders
	4.5 Accumulation of Electrostatic Charge
		4.5.1 Accumulation in Liquids
		4.5.2 Accumulation on Insulated Conductors
		4.5.3 Accumulation on Lined/Coated Containers
		4.5.4 Accumulation on Powders
	4.6 Electrostatic Discharge
		4.6.1 Spark Discharge
		4.6.2 Corona Discharge
		4.6.3 Brush Discharge
		4.6.4 Propagating Brush Discharge
		4.6.5 Bulking Brush Discharge
	4.7 Ignition of Flammable Vapors and Dusts by Electrostatic Discharge
		4.7.1 Hybrid Mixtures
	4.8 Hazards from People and Clothing
	4.9 Earthing and Bonding
	4.10 Examples of Static Ignition
		4.10.1 Draining Flammable Liquids into Buckets
		4.10.2 Removing Synthetic Clothing from Body
		4.10.3 Charging High-Resistivity Flakes/Powders
		4.10.4 Filling Polyethylene Granules into a Silo
	4.11 Summary of Common Precautionary Measures for Static Hazards
	References
Chapter 5 Pool Fire
	5.1 Size and Shape of Flames
		5.1.1 Confined Pool Fire on Land
			5.1.1.1 Pool Diameter
			5.1.1.2 Burning Rate
			5.1.1.3 Flame Height
		5.1.2 Unconfined Pool Fire on Land
		5.1.3 Pool Fire on Water
		5.1.4 Tank Fire
	5.2 Modeling for Radiation Intensity
		5.2.1 Surface Emissive Power of Flames
		5.2.2 View Factor between a Flame and a Target
			5.2.2.1 Case 1: Pool Fire and Target at Ground Level
			5.2.2.2 Case 2: Tank Fire with Target at Ground Level/Elevated Position
		5.2.3 Atmospheric Transmissivity
		5.2.4 Assessment of Safety Distance
	References
Chapter 6 Jet Fire
	6.1 Flow through a Hole (Free Expansion)
		6.1.1 Theoretical Basis
		6.1.2 Compressibility Factor and Enthalpy for Real Gases
		6.1.3 Release Rate Calculation
			6.1.3.1 Bernoulli’s Equation
			6.1.3.2 Sonic Velocity
			6.1.3.3 C[sub(p)], C[sub(v)], and γ = C[sub(p)]/C[sub(v)] Ratio
			6.1.3.4 Density
			6.1.3.5 Velocity
		6.1.4 Additional Examples
		6.1.5 Flashing of Liquids
		6.1.6 Flashing of Pure Components
	6.2 Thermodynamics of Fluid Phase Equilibria
		6.2.1 Phase Equilibria in Hydrocarbon Mixtures
		6.2.2 Phase Equilibria in Chemical Mixtures
		6.2.3 Flash Calculations for Mixtures
		6.2.4 Laboratory Measurements Versus Estimation Methods in Phase Equilibria
		6.2.5 Commercial Process Simulators
		6.2.6 Release of a LiquefiedGas: Two-Phase Flashing Flow
		6.2.7 Concluding Remarks for Release Rate Calculations
	6.3 Calculations for Jet Fires
		6.3.1 Size and Shape of Flames
			6.3.1.1 Hawthorn, Weddell, and Hottel Model
			6.3.1.2 API Model
			6.3.1.3 Shell Model
	6.4 Estimation of Radiation Intensity
		6.4.1 Fractional Radiation
		6.4.2 Radiation Intensity by the API method
		6.4.3 Radiation Intensity by the Shell Method
	References
Chapter 7 Vapor Cloud Fire
	7.1 Flash Fire Accidents and Experiments
	7.2 Flame Speed
		7.2.1 Premixed Flame
		7.2.2 Nonpremixed Flame
	7.3 Flame Dimensions
	7.4 Effect of Flame Exposure
	References
Chapter 8 Fireball
	8.1 BLEVE
	8.2 Diameter and Duration of Fireball
	8.3 Intensity of Thermal Radiation
		8.3.1 Fractional Radiation
		8.3.2 Surface Emissive Power
		8.3.3 View Factor
		8.3.4 Atmospheric Transmissivity
	8.4 Measures to Prevent BLEVE
		8.4.1 Cooling the Vessel by Water Deluge or Spray
		8.4.2 Insulation of the Vessel
		8.4.3 Providing an Earth Mound around the Vessel
	8.5 Measures in Case of Imminent BLEVE
	References
Chapter 9 Explosion
	9.1 Kinds and Types of Explosions
	9.2 Explosion Mechanisms
		9.2.1 Deflagration
		9.2.2 Detonation
		9.2.3 DDT
	9.3 VCE
		9.3.1 TNT Equivalent Model
		9.3.2 TNO Correlation Model
		9.3.3 TNO Multienergy Model
		9.3.4 Baker-Strehlow-Tang (BST) Method
		9.3.5 Congestion Assessment Method
		9.3.6 CFD Models
			9.3.6.1 FLACS (FLame ACceleration Simulator)
			9.3.6.2 EXSIM[sup(™)] (EXplosion SIMulator)
			9.3.6.3 AutoReaGas Model
		9.3.7 Comparison of Various Models
		9.3.8 Precautionary Measures to Prevent and Minimize Damage in VCEs
		9.3.9 Damage Caused by VCE
			9.3.9.1 Damage to Structures – TNO
			9.3.9.2 Damage to Structures – Major Hazard Assessment Panel (IChemE, U.K.)
			9.3.9.3 Damage to Storage Tanks – TNO
			9.3.9.4 Effect on People – Major Hazard Assessment Panel (IChemE U.K.)
	9.4 Condensed Phase Explosion
		9.4.1 Precautionary Measures to Minimize Damage in Condensed Phase Explosion
		9.4.2 Formation of Explosive Mixture – Ammonium Nitrate (AN)
		9.4.3 Effect of Mechanical or Electrical Shock
	9.5 Explosions in a Chemical Reactor
	9.6 Dust Explosion
	9.7 Physical Explosion
	References
Chapter 10 Toxic Releases
	10.1 Process Safety Concerns – Acute Effects/Emergency Exposure Limits
		10.1.1 Emergency Response Planning Guidelines
		10.1.2 Toxic Endpoints
		10.1.3 Acute Exposure Guideline Levels
			10.1.3.1 Level 1
			10.1.3.2 Level 2
			10.1.3.3 Level 3
	10.2 Occupational Safety Concerns – Toxicity Measures and Assessment
		10.2.1 Median Lethal Dose (LD[sub(50)])
		10.2.2 Median Lethal Concentration (LC[sub(50)])
			10.2.2.1 Toxic Load
		10.2.3 Immediately Dangerous to Life and Health
	10.3 Regulatory Controls
		10.3.1 Occupational Exposure Standards
	10.4 Emergency Planning
	References
Chapter 11 Dispersion of Gases and Vapors
	11.1 Purpose of Dispersion Studies
	11.2 Emission Source Models
		11.2.1 Liquid Releases
		11.2.2 Gas Jet Releases
		11.2.3 Two-Phase Releases
		11.2.4 Evaporation from Liquid Pools
			11.2.4.1 Evaporation of Cryogenic Liquids
			11.2.4.2 Evaporation of High Boiling Liquids
	11.3 Dispersion Models
		11.3.1 Passive Dispersion
			11.3.1.1 Factors Affecting Passive Dispersion
			11.3.1.2 Dispersion Calculations
		11.3.2 Dense Gas Dispersion
		11.3.3 Jet Dispersion
			11.3.3.1 Dense Gas Jet Dispersion
			11.3.3.2 Positively Buoyant Jet Dispersion
	11.4 Computational Fluid Dynamics Modelling
	References
Chapter 12 Hazard Identification
	12.1 Framework for Hazard Management
	12.2 Hazard Identification Methods
		12.2.1 Safety Audit
		12.2.2 What-If Checklist
		12.2.3 HAZOP Study
			12.2.3.1 Basic Concepts of the Study
			12.2.3.2 Study Procedure
		12.2.4 Failure Modes and Effects Analysis (FMEA)
		12.2.5 Fault Tree and Event Tree Analysis
	12.3 Comments on Choice of the Method
	References
Chapter 13 Risk Assessment and Control
	13.1 Methods of Expressing Risks
		13.1.1 Fatal Accident Rate
		13.1.2 Individual Risk
		13.1.3 Average Individual Risk
		13.1.4 Societal Risk
	13.2 Layer of Protection Analysis
		13.2.1 LOPA Process
		13.2.2 Select Criteria for Consequence Screening
		13.2.3 Select Consequence Analysis Scenarios for LOPA
		13.2.4. Identify Initiating Events and Frequencies
		13.2.5 Identify IPLs
		13.2.6 Risk Estimation
		13.2.7 Risk Evaluation
		13.2.8 LOPA Summary Sheet: An Example
		13.2.9 Advantages of LOPA
	13.3 Barrier Analysis
		13.3.1 Barrier failure and Catastrophic Accidents
		13.3.2 Important Definitions Related to Barrier Management
		13.3.3 Independence of Barriers
		13.3.4 Barrier Management Process
	13.4 QRA
		13.4.1 Estimation of Frequency of a Hazardous Event
			13.4.1.1 Fault Tree Methodology
			13.4.1.2 Event Tree Methodology
		13.4.2 Estimation of Risk
			13.4.2.1 Individual Risk
			13.4.2.2 Societal Risk (F-N Curve)
		13.4.3 Risk Determination
		13.4.4 Risk Acceptability
			13.4.4.1 Individual Risk – Acceptability Criteria
			13.4.4.2 Societal Risk – Acceptability Criteria
		13.4.5 Risk Reduction and ALARP
	13.5 Functional Safety
		13.5.1 SIS
		13.5.2 SRS – Safety Requirement Specification
		13.5.3 SIL
			13.5.3.1 SIL Verification
			13.5.3.2 SIL Validation
	13.6 Database for Failure Frequencies and Probabilities
		13.6.1 Failure Frequencies for Tanks and Vessels
		13.6.2 Failure Frequencies of Process Pipework
		13.6.3 Failure Frequencies of Cross-Country Pipelines
		13.6.4 Failure Rates of Loading Arms
		13.6.5 Failure Frequencies for Valves
		13.6.6 Failure Probabilities for Protective Equipment
		13.6.7 Probabilities of Human Error
		13.6.8 Ignition Probability of Flammable Liquid Releases
		13.6.9 Ignition of Gas Clouds
	13.7 Application of LOPA, Barrier Analysis, and QRA
	References
Chapter 14 Human Factors in Process Safety
	14.1 Accidents and Human failures
	14.2 Human Role in Hazard Control
	14.3 Types of Human Errors
	14.4 Human Factors in Safety (HFs)
	14.5 Human Error Identification
	14.6 HFs – A Core Element
	14.7 Human Reliability Analysis (HRA)
	14.8 HRA Adoption
	14.9 Human Development
	14.10 Industry Response
	References
Chapter 15 Process Safety and Manufacturing Excellence
	15.1 Process Safety Leadership
	15.2 Process Safety Laws and Regulations
	15.3 Process Safety vis-à-vis Personnel Safety
	15.4 The Role of Process and Equipment Design in Ensuring Process Safety
	15.5 Strategies for Implementation of Process Safety Programs
		15.5.1 Sensor Validation
		15.5.2 Sample Time Recording
		15.5.3 Control System Hardware and Configuration
		15.5.4 Control Valves
		15.5.5 Control System Configuration
		15.5.6 Regulatory Control Tuning
	15.6 Higher-Level Multivariable Control and Optimization Applications
	15.7 Online Calculations/Equipment Health Monitoring
		15.7.1 Fired Heater Radiant Section Duty
		15.7.2 Heat Exchanger Duty
			15.7.2.1 No Phase Change
			15.7.2.2 Condensing or Boiling
		15.7.3 Distillation Column Pressure-Compensated Temperature
		15.7.4 Distillation Column Approach to Flooding
		15.7.5 Pump/Compressor/Turbine Efficiency and Vibration
		15.7.6 Compressor Efficiency
		15.7.7 Turbine Efficiency
		15.7.8 Pump Efficiency
	15.8 Smart Sensors/Inferential Calculations
	15.9 Multivariable, Optimal Predictive Control (MPC)
		15.9.1 Using Dynamic Simulation for Developing MPC Models
		15.9.2 Closing Remarks on Model-Predictive Control (MPC)
	15.10 Closed-Loop, Real-Time, Optimization (CLRTO)
		15.10.1 Open-Equation Modeling for a Counter-Flow Heat Exchanger
		15.10.2 Building Successful Plant-Wide CLRTO Applications
		15.10.3 Challenges in Rigorous Chemical Reactor Modeling
	15.11 Planning and Scheduling Optimization
	15.12 Intelligent Alarm Management
	15.13 Emergency Shutdown Systems (ESD)
	15.14 Location of Process Control Rooms
	References
Index




نظرات کاربران