ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب FUNDAMENTALS OF POWER ELECTRONICS.

دانلود کتاب مبانی برق قدرت.

FUNDAMENTALS OF POWER ELECTRONICS.

مشخصات کتاب

FUNDAMENTALS OF POWER ELECTRONICS.

ویرایش: 3 
نویسندگان:   
سری:  
ISBN (شابک) : 9783030438791, 3030438791 
ناشر: SPRINGER NATURE 
سال نشر: 2020 
تعداد صفحات: 1081 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 63 مگابایت 

قیمت کتاب (تومان) : 35,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب FUNDAMENTALS OF POWER ELECTRONICS. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مبانی برق قدرت. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مبانی برق قدرت.

مبانی الکترونیک قدرت، ویرایش سوم، یک متن و کتاب مرجع به روز و معتبر در زمینه الکترونیک قدرت است. این نسخه جدید هدف و فلسفه اصلی تمرکز بر اصول اساسی، مدل‌ها و الزامات فنی مورد نیاز برای طراحی سیستم‌های الکترونیک قدرت عملی را حفظ می‌کند و در عین حال مواد جدید زیادی را اضافه می‌کند. ویژگی های بهبود یافته این نسخه جدید عبارتند از: مطالب جدید در مورد مکانیسم های تلفات سوئیچینگ و مدل سازی آنها. دستگاه های نیمه هادی باندگپ گسترده؛ درمان دقیق تر میانگین گیری؛ توضیح معیار پایداری نایکیست ادغام مدل Tan و Middlebrook برای کنترل برنامه ریزی شده فعلی. فصل جدید در کنترل دیجیتال مبدل های سوئیچینگ. فصول جدید عمده در مورد تکنیک های پیشرفته تجزیه و تحلیل طراحی گرا از جمله بازخورد و قضایای اضافی. کنترل جریان متوسط؛ مواد جدید در طراحی فیلتر ورودی؛ درمان جدید مدل سازی سوئیچ متوسط، شبیه سازی، و توان غیر مستقیم. و اثرات نمونه برداری در DCM، CPM، و کنترل دیجیتال. مبانی الکترونیک قدرت، ویرایش سوم، برای استفاده در دوره های مقدماتی الکترونیک قدرت و زمینه های مرتبط برای دانشجویان ارشد و دانشجویان سال اول کارشناسی ارشد علاقه مند به مدارهای مبدل و الکترونیک، سیستم های کنترل، و سیستم های مغناطیسی و قدرت در نظر گرفته شده است. همچنین برای متخصصانی که در الکترونیک قدرت، تبدیل نیرو و الکترونیک آنالوگ و دیجیتال کار می کنند، مرجع ارزشمندی خواهد بود.


توضیحاتی درمورد کتاب به خارجی

Fundamentals of Power Electronics, Third Edition, is an up-to-date and authoritative text and reference book on power electronics. This new edition retains the original objective and philosophy of focusing on the fundamental principles, models, and technical requirements needed for designing practical power electronic systems while adding a wealth of new material. Improved features of this new edition include: new material on switching loss mechanisms and their modeling; wide bandgap semiconductor devices; a more rigorous treatment of averaging; explanation of the Nyquist stability criterion; incorporation of the Tan and Middlebrook model for current programmed control; a new chapter on digital control of switching converters; major new chapters on advanced techniques of design-oriented analysis including feedback and extra-element theorems; average current control; new material on input filter design; new treatment of averaged switch modeling, simulation, and indirect power; and sampling effects in DCM, CPM, and digital control. Fundamentals of Power Electronics, Third Edition, is intended for use in introductory power electronics courses and related fields for both senior undergraduates and first-year graduate students interested in converter circuits and electronics, control systems, and magnetic and power systems. It will also be an invaluable reference for professionals working in power electronics, power conversion, and analog and digital electronics.



فهرست مطالب

Preface
Contents
1 Introduction
	1.1 Introduction to Power Processing
	1.2 Several Applications of Power Electronics
	1.3 Elements of Power Electronics
Part I Converters in Equilibrium
	2 Principles of Steady-State Converter Analysis
		2.1 Introduction
		2.2 Volt-Second and Charge Balance, Small-Ripple Approximation
		2.3 Boost Converter Example
		2.4 Ćuk Converter Example
		2.5 Estimating the Output Voltage Ripple in Converters Containing Two-Pole Low-Pass Filters
		2.6 Summary of Key Points
		Problems
	3 Steady-State Equivalent Circuit Modeling, Losses, and Efficiency
		3.1 The DC Transformer Model
		3.2 Inclusion of Inductor Copper Loss
		3.3 Construction of Equivalent Circuit Model
			3.3.1 Inductor Voltage Equation
			3.3.2 Capacitor Current Equation
			3.3.3 Complete Circuit Model
			3.3.4 Efficiency
		3.4 How to Obtain the Input Port of the Model
		3.5 Example: Inclusion of Semiconductor Conduction Losses in the Boost Converter Model
		3.6 Summary of Key Points
		Problems
	4 Switch Realization
		4.1 Switch Applications
			4.1.1 Single-Quadrant Switches
			4.1.2 Current-Bidirectional Two-Quadrant Switches
			4.1.3 Voltage-Bidirectional Two-Quadrant Switches
			4.1.4 Four-Quadrant Switches
			4.1.5 Synchronous Rectifiers
		4.2 Introduction to Power Semiconductors
			4.2.1 Breakdown Voltage, Forward Voltage, and Switching Speed
			4.2.2 Transistor Switching Loss with Clamped Inductive Load
		4.3 The Power Diode
			4.3.1 Introduction to Power Diodes
			4.3.2 Discussion: Power Diodes
			4.3.3 Modeling Diode-Induced Switching Loss
			4.3.4 Boost Converter Example
		4.4 Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)
			4.4.1 Introduction to the Power MOSFET
			4.4.2 Wide-Bandgap FETs
			4.4.3 MOSFET Gate Drivers
		4.5 Minority-Carrier Transistors
			4.5.1 Bipolar Junction Transistor (BJT)
			4.5.2 Insulated-Gate Bipolar Transistor (IGBT)
			4.5.3 Thyristors (SCR, GTO)
		4.6 Additional Sources of Switching Loss
			4.6.1 Device Capacitances, and Leakage, Package, and Stray Inductances
			4.6.2 Inducing Switching Loss in Other Elements
			4.6.3 Efficiency vs. Switching Frequency
		4.7 Summary of Key Points
		Problems
	5 The Discontinuous Conduction Mode
		5.1 Origin of the Discontinuous Conduction Mode, and Mode Boundary
		5.2 Analysis of the Conversion Ratio M(D,K)
		5.3 Boost Converter Example
		5.4 Summary of Results and Key Points
		Problems
	6 Converter Circuits
		6.1 Circuit Manipulations
			6.1.1 Inversion of Source and Load
			6.1.2 Cascade Connection of Converters
			6.1.3 Rotation of Three-Terminal Cell
			6.1.4 Differential Connection of the Load
		6.2 A Short List of Converters
		6.3 Transformer Isolation
			6.3.1 Full-Bridge and Half-Bridge Isolated Buck Converters
			6.3.2 Forward Converter
			6.3.3 Push-Pull Isolated Buck Converter
			6.3.4 Flyback Converter
			6.3.5 Boost-Derived Isolated Converters
			6.3.6 Isolated Versions of the SEPIC and the Ćuk Converter
		6.4 Summary of Key Points
		Problems
Part II Converter Dynamics and Control
	7 AC Equivalent Circuit Modeling
		7.1 Introduction
		7.2 The Basic AC Modeling Approach
			7.2.1 Averaging the Inductor and Capacitor Waveforms
			7.2.2 The Average Inductor Voltage and the Small-Ripple Approximation
			7.2.3 Discussion of the Averaging Approximation
			7.2.4 Averaging the Capacitor Waveforms
			7.2.5 The Average Input Current
			7.2.6 Perturbation and Linearization
			7.2.7 Construction of the Small-Signal Equivalent Circuit Model
			7.2.8 Discussion of the Perturbation and Linearization Step
			7.2.9 Results for Several Basic Converters
			7.2.10 Example: A Nonideal Flyback Converter
		7.3 Modeling the Pulse-Width Modulator
		7.4 The Canonical Circuit Model
			7.4.1 Development of the Canonical Circuit Model
			7.4.2 Example: Manipulation of the Buck–Boost Converter Model into Canonical Form
			7.4.3 Canonical Circuit Parameter Values for Some Common Converters
		7.5 State-Space Averaging
			7.5.1 The State Equations of a Network
			7.5.2 The Basic State-Space Averaged Model
			7.5.3 Discussion of the State-Space Averaging Result
			7.5.4 Example: State-Space Averaging of a Nonideal Buck–Boost Converter
			7.5.5 Example: State-Space Averaging of a Boost Converter with ESR
		7.6 Summary of Key Points
		Problems
	8 Converter Transfer Functions
		8.1 Review of Bode Plots
			8.1.1 Single-Pole Response
			8.1.2 Single Zero Response
			8.1.3 Right Half-Plane Zero
			8.1.4 Frequency Inversion
			8.1.5 Combinations
			8.1.6 Quadratic Pole Response: Resonance
			8.1.7 The Low-Q Approximation
			8.1.8 The High-Q Approximation
			8.1.9 Approximate Roots of an Arbitrary-Degree Polynomial
		8.2 Analysis of Converter Transfer Functions
			8.2.1 Example: Transfer Functions of the Buck–Boost Converter
			8.2.2 Transfer Functions of Some Basic CCM Converters
			8.2.3 Physical Origins of the RHP Zero in Converters
		8.3 Graphical Construction of Impedances and Transfer Functions
			8.3.1 Series Impedances: Addition of Asymptotes
			8.3.2 Series Resonant Circuit Example
			8.3.3 Parallel Impedances: Inverse Addition of Asymptotes
			8.3.4 Parallel Resonant Circuit Example
			8.3.5 Voltage Divider Transfer Functions: Division of Asymptotes
		8.4 Graphical Construction of Converter Transfer Functions
		8.5 Measurement of AC Transfer Functions and Impedances
		8.6 Summary of Key Points
		Problems
	9 Controller Design
		9.1 Introduction
		9.2 Effect of Negative Feedback on the Network Transfer Functions
			9.2.1 Feedback Reduces the Transfer Functions from Disturbances to the Output
			9.2.2 Feedback Causes the Transfer Function from the Reference Input to the Output to Be Insensitive to Variations in the Gains in the Forward Path of the Loop
		9.3 Construction of 1/(1+T) and T/(1+T)
		9.4 Stability
			9.4.1 The Phase Margin Test
			9.4.2 The Nyquist Stability Criterion
				The Principle of the Argument
				The Nyquist Contour
				Stability Test
				A Basic Example
				Example 2: Three Crossover Frequencies
				Example 3: Integrator in Feedback Loop
				Summary: Nyquist Stability Criterion
			9.4.3 The Relationship Between Phase Margin and Closed-Loop Damping Factor
			9.4.4 Transient Response vs. Damping Factor
			9.4.5 Load Step Response vs. Damping Factor
		9.5 Regulator Design
			9.5.1 Lead (PD) compensator
			9.5.2 Lag (PI) Compensator
			9.5.3 Combined (PID) Compensator
			9.5.4 Design Example
		9.6 Measurement of Loop Gains
			9.6.1 Voltage Injection
			9.6.2 Current Injection
			9.6.3 Measurement of Unstable Systems
		9.7 Summary of Key Points
		Problems
Part III Magnetics
	10 Basic Magnetics Theory
		10.1 Review of Basic Magnetics
			10.1.1 Basic Relationships
			10.1.2 Magnetic Circuits
		10.2 Transformer Modeling
			10.2.1 The Ideal Transformer
			10.2.2 The Magnetizing Inductance
			10.2.3 Leakage Inductances
		10.3 Loss Mechanisms in Magnetic Devices
			10.3.1 Core Loss
			10.3.2 Low-Frequency Copper Loss
		10.4 Eddy Currents in Winding Conductors
			10.4.1 Introduction to the Skin and Proximity Effects
			10.4.2 Leakage Flux in Windings
			10.4.3 Foil Windings and Layers
			10.4.4 Power Loss in a Layer
			10.4.5 Example: Power Loss in a Transformer Winding
			10.4.6 Interleaving the Windings
			10.4.7 PWM Waveform Harmonics
		10.5 Several Types of Magnetic Devices, Their B–H Loops, and Core vs. Copper Loss
			10.5.1 Filter Inductor
			10.5.2 AC Inductor
			10.5.3 Transformer
			10.5.4 Coupled Inductor
			10.5.5 Flyback Transformer
		10.6 Summary of Key Points
		Problems
	11 Inductor Design
		11.1 Filter Inductor Design Constraints
			11.1.1 Maximum Flux Density
			11.1.2 Inductance
			11.1.3 Winding Area
			11.1.4 Winding Resistance
			11.1.5 The Core Geometrical Constant Kg
		11.2 The Kg Method: A First-Pass Design
		11.3 Multiple-Winding Magnetics Design via the Kg Method
			11.3.1 Window Area Allocation
			11.3.2 Coupled Inductor Design Constraints
			11.3.3 First-Pass Design Procedure
		11.4 Examples
			11.4.1 Coupled Inductor for a Two-Output Forward Converter
			11.4.2 CCM Flyback Transformer
		11.5 Summary of Key Points
		Problems
	12 Transformer Design
		12.1 Transformer Design: Basic Constraints
			12.1.1 Core Loss
			12.1.2 Flux Density
			12.1.3 Copper Loss
			12.1.4 Total Power Loss vs. Δ B
			12.1.5 Optimum Flux Density
		12.2 A First-Pass Transformer Design Procedure
			12.2.1 Procedure
		12.3 Examples
			12.3.1 Example 1: Single-Output Isolated Ćuk Converter
			12.3.2 Example 2: Multiple-Output Full-Bridge Buck Converter
		12.4 AC Inductor Design
			12.4.1 Outline of Derivation
			12.4.2 First-Pass AC Inductor Design Procedure
		12.5 Summary
		Problems
Part IV Advanced Modeling, Analysis, and Control Techniques
	13 Techniques of Design-Oriented Analysis: The Feedback Theorem
		13.1 Introduction to Part IV
		13.2 The Feedback Theorem
			13.2.1 Basic Result
			13.2.2 Derivation
		13.3 Example: Op Amp PD Compensator Circuit
		13.4 Example: Closed-Loop Regulator
		13.5 Summary of Key Points
		Problems
	14 Circuit Averaging, Averaged Switch Modeling, and Simulation
		14.1 Circuit Averaging and Averaged Switch Modeling
			14.1.1 Obtaining a Time-Invariant Circuit
			14.1.2 Circuit Averaging
			14.1.3 Perturbation and Linearization
			14.1.4 Indirect Power
		14.2 Additional Configurations of Switch Networks
		14.3 Simulation of Averaged Circuit Models
			14.3.1 Simulation Model of the Ideal CCM Averaged Switch Network
			14.3.2 Averaged Switch Modeling and Simulation of Conduction Losses
			14.3.3 Inclusion of Switch Conduction Losses in Simulations
			14.3.4 Example: SEPIC DC Conversion Ratio and Efficiency
			14.3.5 Example: Transient Response of a Buck–Boost Converter
		14.4 Summary of Key Points
		Problems
	15 Equivalent Circuit Modeling of the Discontinuous Conduction Mode
		15.1 Introduction to DCM Converter Dynamics
		15.2 DCM Averaged Switch Model
		15.3 Small-Signal AC Modeling of the DCM Switch Network
			15.3.1 Example: Control-to-Output Frequency Response of a DCM Boost Converter
		15.4 Combined CCM/DCM Averaged Switch Simulation Model
			15.4.1 Example: CCM/DCM SEPIC Frequency Responses
			15.4.2 Example: Loop Gain and Closed-Loop Responses of a Buck Voltage Regulator
		15.5 High-Frequency Dynamics of Converters in DCM
		15.6 Summary of Key Points
		Problems
	16 Techniques of Design-Oriented Analysis: Extra Element Theorems
		16.1 Extra Element Theorem
			16.1.1 Basic Result
			16.1.2 Derivation
			16.1.3 Discussion
		16.2 EET Examples
			16.2.1 A Simple Transfer Function
			16.2.2 An Unmodeled Element
			16.2.3 SEPIC Example
			16.2.4 Damping the SEPIC Internal Resonances
		16.3 The n-Extra Element Theorem
			16.3.1 Introduction to the n-EET
			16.3.2 Procedure for DC-Referenced Functions
		16.4 n-EET Examples
			16.4.1 Two-Section L–C Filter
			16.4.2 Bridge-T Filter Example
		16.5 Frequency Inversion
			16.5.1 Example: Damped Input Filter
			16.5.2 Other Special Cases
		Problems
	17 Input Filter Design
		17.1 Introduction
			17.1.1 Conducted EMI
			17.1.2 The Input Filter Design Problem
		17.2 Effect of an Input Filter on Converter Transfer Functions
			17.2.1 Modified Transfer Functions
			17.2.2 Discussion
			17.2.3 Impedance Inequalities
		17.3 Buck Converter Example
			17.3.1 Effect of Undamped Input Filter
			17.3.2 Damping the Input Filter
		17.4 Design of a Damped Input Filter
			17.4.1 Rf–Cb Parallel Damping
			17.4.2 Rf–Lb Parallel Damping
			17.4.3 Rf–Lb Series Damping
			17.4.4 Cascading Filter Sections
			17.4.5 Example: Two Stage Input Filter
		17.5 Stability Criteria
			17.5.1 Modified Phase Margin
			17.5.2 Closed-Loop Input Impedance
				Effect of input filter on closed-loop transfer functions
				Finding the closed-loop input admittance Yi = 1/ZDg
				Construction of Zi
				Determination of stability
			17.5.3 Discussion
		17.6 Summary of Key Points
		Problems
	18 Current-Programmed Control
		18.1 A Simple First-Order Model
			18.1.1 Simple Model via Algebraic Approach: Buck–Boost Example
			18.1.2 Averaged Switch Modeling
		18.2 Oscillation for D > 0.5
		18.3 A More Accurate Model
			18.3.1 Current-Programmed Controller Model
			18.3.2 Small-Signal Averaged Model
		18.4 Current-Programmed Transfer Functions
			18.4.1 Discussion
			18.4.2 Current-Programmed Transfer Functions of the CCM Buck Converter
			18.4.3 Results for Basic Converters
			18.4.4 Addition of an Input Filter to a Current-Programmed Converter
		18.5 Simulation of CPM Controlled Converters
			18.5.1 Simulation Model for CPM Controlled Converters in CCM
			18.5.2 Combined CCM/DCM Simulation Model
			18.5.3 Simulation Example: Frequency Responses of a Buck Converter with Current-Programmed Control
		18.6 Voltage Feedback Loop Around a Current-Programmed Converter
			18.6.1 System Model
			18.6.2 Design Example
		18.7 High-Frequency Dynamics of Current-Programmed Converters
			18.7.1 Sampled-Data Model
			18.7.2 First-Order Approximation
			18.7.3 Second-Order Approximation
		18.8 Discontinuous Conduction Mode
		18.9 Average Current-Mode Control
			18.9.1 System Model and Transfer Functions
			18.9.2 Design Example: ACM Controlled Boost Converter
		18.10  Summary of Key Points
		Problems
	19 Digital Control of Switched-Mode Power Converters
		19.1 Digital Control Loop
			19.1.1 A/D and DPWM Quantization
				Analog-to-Digital Conversion
				Digital Pulse-Width Modulation
				Ideal Quantization Characteristics
			19.1.2 Sampling and Delays in the Control Loop
		19.2 Introduction to Discrete-Time Systems
			19.2.1 Integration in Continuous Time and in Discrete Time
			19.2.2 z-Transform and Frequency Responses of Discrete-Time Systems
			19.2.3 Continuous Time to Discrete Time Mapping
		19.3 Discrete-Time Compensator Design
			Example
			19.3.1 Design Procedure
			19.3.2 Design Example
		19.4 Digital Controller Implementation
			19.4.1 Discrete-Time Compensator Realization
			19.4.2 Quantization Effects, Digital Pulse-Width Modulators and A/D Converters
				Digital Pulse-Width Modulators
				A/D Converters
		19.5 Summary of Key Points
		Problems
Part V Modern Rectifiers and Power System Harmonics
	20 Power and Harmonics in Nonsinusoidal Systems
		20.1 Average Power
		20.2 Root-Mean-Square (RMS) Value of a Waveform
		20.3 Power Factor
			20.3.1 Linear Resistive Load, Nonsinusoidal Voltage
			20.3.2 Nonlinear Dynamic Load, Sinusoidal Voltage
		20.4 Power Phasors in Sinusoidal Systems
		20.5 Harmonic Currents in Three-Phase Systems
			20.5.1 Harmonic Currents in Three-Phase Four-Wire Networks
			20.5.2 Harmonic Currents in Three-Phase Three-Wire Networks
			20.5.3 Harmonic Current Flow in Power Factor Correction Capacitors
		Problems
	21 Pulse-Width Modulated Rectifiers
		21.1 Properties of the Ideal Rectifier
		21.2 Realization of a Near-Ideal Rectifier
			21.2.1 CCM Boost Converter
			21.2.2 Simulation Example: DCM Boost Rectifier
			21.2.3 DCM Flyback Converter
		21.3 Control of the Current Waveform
			21.3.1 Average Current Control
			21.3.2 Current-Programmed Control
			21.3.3 Critical Conduction Mode and Hysteretic Control
			21.3.4 Nonlinear Carrier Control
		21.4 Single-Phase Converter Systems Incorporating Ideal Rectifiers
			21.4.1 Energy Storage
			21.4.2 Modeling the Outer Low-Bandwidth Control System
		21.5 RMS Values of Rectifier Waveforms
			21.5.1 Boost Rectifier Example
			21.5.2 Comparison of Single-Phase Rectifier Topologies
		21.6 Modeling Losses and Efficiency in CCM High-Quality Rectifiers
			21.6.1 Expression for Controller Duty Cycle d(t)
			21.6.2 Expression for the DC Load Current
			21.6.3 Solution for Converter Efficiency
			21.6.4 Design Example
		21.7 Ideal Three-Phase Rectifiers
		21.8 Summary of Key Points
		Problems
Part VI Resonant Converters
	22 Resonant Conversion
		22.1 Sinusoidal Analysis of Resonant Converters
			22.1.1 Controlled Switch Network Model
			22.1.2 Modeling the Rectifier and Capacitive Filter Networks
			22.1.3 Resonant Tank Network
			22.1.4 Solution of Converter Voltage Conversion Ratio M=V/Vg
		22.2 Examples
			22.2.1 Series Resonant DC–DC Converter Example
			22.2.2 Subharmonic Modes of the Series Resonant Converter
			22.2.3 Parallel Resonant DC–DC Converter Example
		22.3 Soft Switching
			22.3.1 Operation of the Full Bridge Below Resonance: Zero-Current Switching
			22.3.2 Operation of the Full-Bridge Above Resonance: Zero-Voltage Switching
		22.4 Load-Dependent Properties of Resonant Converters
			22.4.1 Inverter Output Characteristics
			22.4.2 Dependence of Transistor Current on Load
			22.4.3 Dependence of the ZVS/ZCS Boundary on Load Resistance
			22.4.4 Another Example
			22.4.5 LLC Example
			22.4.6 Results for Basic Tank Networks
		22.5 Exact Characteristics of the Series and Parallel Resonant Converters
			22.5.1 Series Resonant Converter
			22.5.2 Parallel Resonant Converter
		22.6 Summary of Key Points
		Problems
	23 Soft Switching
		23.1 Soft-Switching Mechanisms of Semiconductor Devices
			23.1.1 Diode Switching
			23.1.2 MOSFET Switching
			23.1.3 IGBT Switching
		23.2 The Zero-Current-Switching Quasi-Resonant Switch Cell
			23.2.1 Waveforms of the Half-Wave ZCS Quasi-Resonant Switch Cell
			23.2.2 The Average Terminal Waveforms
			23.2.3 The Full-Wave ZCS Quasi-Resonant Switch Cell
		23.3 Resonant Switch Topologies
			23.3.1 The Zero-Voltage-Switching Quasi-Resonant Switch
			23.3.2 The Zero-Voltage-Switching Multiresonant Switch
			23.3.3 Quasi-Square-Wave Resonant Switches
		23.4 Soft Switching in PWM Converters
			23.4.1 The Zero-Voltage Transition Full-Bridge Converter
			23.4.2 The Auxiliary Switch Approach
			23.4.3 Auxiliary Resonant Commutated Pole
		23.5 Summary of Key Points
		Problems
Appendices
	RMS Values of Commonly Observed Converter Waveforms
		A.1 Some Common Waveforms
		A.2 General Piecewise Waveform
	Magnetics Design Tables
		B.1 Pot Core Data
		B.2 EE Core Data
		B.3 EC Core Data
		B.4 ETD Core Data
		B.5 PQ Core Data
		B.6 American Wire Gauge Data
References
Index




نظرات کاربران