دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ریاضیات ویرایش: 1 نویسندگان: Carl B. Allendoerfer سری: ناشر: McGraw-Hill سال نشر: 1959 تعداد صفحات: 504 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 51 مگابایت
در صورت تبدیل فایل کتاب Fundamentals of Freshman Mathematics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی ریاضیات سال اول نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Chapter 1. Mathematics and Science 1.1. Introduction 1.2. Abstract Nature of Mathematics 1.3. Negations 1.4. Implications 1.5. Necessary and Sufficient Conditions 1.6. Direct Proof 1.7. Other Methods of Proof 1.8. Methods of Disproof 1.9. Mathematical Models Chapter 2. The Number System 2.1. Introduction 2.2. Addition of Real Numbers 2.3. Multiplication of Real Numbers 2.4. Formal Properties of Real Numbers 2.5. Special Properties of the Natural Numbers - Mathematical Induction 2.6. Special Properties of Zero 2.7. Special Properties of the Integers 2.8. Special Properties of the Rational Numbers 2.9. Decimal Expansions 2.10. Some Irrational Numbers 2.11. Geometric Representation of Real Numbers 2.12. The Use of Real Numbers in the Plane 2.13. Lengths of Segments; Units on the Axes 2.14. Complex Numbers 2.15. Solutions of Other Algebraic Equations 2.16. Classification of Numbers Chapter 3. Polynomials 3.1. Algebraic Expressions 3.2. Addition of Polynomials 3.3. Multiplication of Polynomials 3.4. Binomial Theorem 3.5. Division of Polynomials 3.6. Factoring Chapter 4. Algebraic Fractions 4.1. Introduction 4.2. Simplification of Fractions 4.3. Addition 4.4. Multiplication and Division 4.5. Compound Fractions Chapter 5. Exponents and Radicals 5.1. Positive Integral Exponents 5.2. Negative and Zero Exponents 5.3. Fractional Exponents 5.4. Special Problems Concerning Square Roots 5.5. Special Problems Concerning Odd Roots 5.6. Unanswered Questions 5.7. Rationalizing Denominators Chapter 6. Sets and Equations 6.1. Sets 6.2. Subsets 6.3. Union and Intersection 6.4. Sets Defined by Equations 6.5. Linear Equations 6.6. Quadratic Equations 6.7. Equations Containing Fractions 6.8. Equations Containing Radicals Chapter 7. Simultaneous Equations and Matrices 7.1. Linear Equations and Their Graphs 7.2. The Graph of a Set of Ordered Pairs 7.3. Simultaneous Linear Equations 7.4. Simultaneous Linear Equations (Continued) 7.5. Simultaneous Linear Equations in Three Unknowns 7.6. Vectors 7.7. Products of Vectors 7.8. Matrices 7.9. Products of Matrices 7.10. Inverse of a Square Matrix 7.11. Determinants 7.12. Applications of Matrices to Simultaneous Equations 7.13. Word Problems Chapter 8. Inequalities 8.1. Introduction 8.2. Theorems about Inequalities 8.3. Linear Inequalities 8.4. Quadratic Inequalities 8.5. The Graph of a Linear Inequality 8.6. Simultaneous Linear Inequalities 8.7. Applications Chapter 9. Functions and Relations 9.1. Relations 9.2. Functions 9.3. Absolute-value Function 9.4. Algebra of Functions 9.5. Graphs 9.6. Graphs (Continued) 9.7. Inverse Functions 9.8. Functions Derived from Equations Chapter 10. Algebraic Functions 10.1. Introduction 10.2. Polynomial Functions 10.3. Rational Functions 10.4. Explicit Algebraic Functions 10.5. Graphs and Continuity 10.6. Properties of Polynomials 10.7. Synthetic Division 10.8. Roots of Polynomial Equations 10.9. Rational Roots of Rational Polynomial Equations 10.10. Real Roots of Real Polynomial Equations Chapter 11. Exponential and Logarithmic Functions 11.1. Exponential Functions 11.2. The Number e 11.3. Logarithmic Functions 11.4. Graphs 11.5. Applications 11.6. The Logarithmic Scale Chapter 12. Trigonometric Functions of Angles 12.1. Introduction 12.2. Distance in the Plane 12.3. Directed Angles 12.4. Polar Coordinates 12.5. Sine and Cosine of a Directed Angle 12.6. Sine and Cosine of Special Angles 12.7. Other Trigonometric Functions 12.8. Some Important Identities 12.9. Trigonometric Tables 12.10. Right Triangles 12.11. Vectors 12.12. Law of Sines 12.13. Law of Cosines 12.14. Law of Tangents 13. Trigonometric Functions of Real Numbers 13.1. Arc Length and Radian Measure 13.2. Computations 13.3. Range and Graphs of the Functions 13.4. Amplitude, Period, Phase 13.5. Addition Theorems 13.6. Multiple- and Half-angle Formulas 13.7. Identities 13.8. Equations 13.9. Inverse Trigonometric Functions 13.10. Complex Numbers Chapter 14. Analytic Geometry 14.1. Introduction 14.2. Mid-point of a Line Segment 14.3. Directed Line Segment 14.4. Rise, Run, Slope, Inclination 14.5. Direction Cosines 14.6. Angle between Two Directed Lines 14.7. Applications to Plane Geometry 14.8. The Straight Line 14.9. Conic Sections 14.10. Case I. The Circle 14.11. Case II. The Parabola 14.12. Case III. The Ellipse 14.13. Case IV. The Hyperbola 14.14. Applications 14.15. Polar Coordinates 14.16. Polar Coordinates (Continued) 14.17. Parametric Equations Chapter 15. Intuitive Integration 15.1. Introduction 15.2. Area of a Circle 15.3. Some Limits 15.4. Area under y = x^2 15.5. Area under y = x^n 15.6. Area under Graph of a Polynomial Function 15.7. Area under y = f(x) 15.8. Integration 15.9. Setting Up Problems; Applications Chapter 16. Intuitive Differentiation 16.1. Introduction 16.2. Notion of a Tangent 16.3. Velocity and Acceleration 16.4. Derivative 16.5. Second Derivative 16.6. The Chain Rule 16.7. Maxima and Minima 16.8. Related Rates 16.9. Fundamental Theorem of Calculus 16.10. Falling Bodies Chapter 17. Hyperbolic Functions 17.1. Hyperbolic Functions 17.2. Hyperbolic and Circular Trigonometric Functions 17.3. Hyperbolic Trigonometry 17.4. Euler's Formula Answers Index