ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Fundamentals of Applied Electromagnetics

دانلود کتاب اصول الکترومغناطیسی کاربردی

Fundamentals of Applied Electromagnetics

مشخصات کتاب

Fundamentals of Applied Electromagnetics

دسته بندی: ابزار
ویرایش: 7 
نویسندگان: ,   
سری:  
ISBN (شابک) : 0133356817, 9780133356816 
ناشر: Prentice Hall 
سال نشر: 2014 
تعداد صفحات: 530 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 12 مگابایت 

قیمت کتاب (تومان) : 42,000



کلمات کلیدی مربوط به کتاب اصول الکترومغناطیسی کاربردی: ابزار دقیق، میدان های الکترومغناطیسی و امواج



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 18


در صورت تبدیل فایل کتاب Fundamentals of Applied Electromagnetics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب اصول الکترومغناطیسی کاربردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب اصول الکترومغناطیسی کاربردی



​​ مبانی الکترومغناطیسی کاربردی برای استفاده در دروس یک یا دو ترم در الکترومغناطیسی در نظر گرفته شده است. همچنین به عنوان مرجعی برای مهندسان عمل می کند.

 

هر دو مورد تحسین گسترده قرار گرفتند در ایالات متحده و خارج از کشور، این متن معتبر، شکاف بین مدارها و مواد الکترومغناطیسی جدید را پر می کند. Ulaby پوشش را با خطوط انتقال آغاز می کند و دانش آموزان را از مفاهیم آشنا به موضوعات و برنامه های پیشرفته تر هدایت می کند. یک رویکرد کاربرپسند، شکل ها و تصاویر تمام رنگی و مجموعه ای از شبیه سازی های تعاملی به خوانندگان کمک می کند تا مفاهیم ارائه شده را درک کنند.


توضیحاتی درمورد کتاب به خارجی

 

Fundamentals of Applied Electromagnetics is intended for use in one- or two-semester courses in electromagnetics. It also serves as a reference for engineers.

 

Widely acclaimed both in the U.S. and abroad, this authoritative text bridges the gap between circuits and new electromagnetics material. Ulaby begins coverage with transmission lines, leading students from familiar concepts into more advanced topics and applications. A user-friendly approach, full-color figures and images, and a set of interactive simulations will help readers understand the concepts presented.



فهرست مطالب

Cover
Title
Copyright
Preface to Seventh Edition
	New to This Edition
	Acknowledgments
	Content
	Message to the Student
	Acknowledgments
List of Technology Briefs
Contents
List of Modules
Photo Credits
1 Introduction: Waves and Phasors
	1-1 Historical Timeline
		1-1.1 EM in the Classical Era
		1-1.2 EM in the Modern Era
	1-2 Dimensions, Units, and Notation
	1-3 The Nature of Electromagnetism
		1-3.1 The Gravitational Force: A Useful Analogue
		1-3.2 Electric Fields
		1-3.3 Magnetic Fields
		1-3.4 Static and Dynamic Fields
	1-4 Traveling Waves
		1-4.1 Sinusoidal Waves in a Lossless Medium
		TB 1: LED Lighting
		1-4.2 Sinusoidal Waves in a Lossy Medium
	1-5 The Electromagnetic Spectrum
	1-6 Review of Complex Numbers
	1-7 Review of Phasors
		1-7.1 Solution Procedure
		TB 2: Solar Cells
		1-7.2 Traveling Waves in the Phasor Domain
	Chapter 1 Summary
		Concepts
		Mathematical and Physical Models
		Important Terms
	Problems
		Section 1-4: Traveling Waves
		Section 1-5: Complex Numbers
		Section 1-6: Phasors
2 Transmission Lines
	2-1 General Considerations
		2-1.1 The Role of Wavelength
		2-1.2 Propagation Modes
	2-2 Lumped-Element Model
	2-3 Transmission-Line Equations
	2-4 Wave Propagation on a Transmission Line
	2-5 The Lossless Microstrip Line
	2-6 The Lossless Transmission Line: General Considerations
		2-6.1 Voltage Reflection Coefficient
		2-6.2 Standing Waves
	2-7 Wave Impedance of the Lossless Line
	2-8 Special Cases of the Lossless Line
		2-8.1 Short-Circuited Line
		2-8.2 Open-Circuited Line
		2-8.3 Application of Short-Circuit/ Open-Circuit Technique
		TB 3: Microwave Ovens
		2-8.4 Lines of Length l = nλ/2
		2-8.5 Quarter-Wavelength Transformer
		2-8.6 Matched Transmission Line: ZL = Z0
	2-9 Power Flow on a Lossless Transmission Line
		2-9.1 Instantaneous Power
		2-9.2 Time-Average Power
	2-10 The Smith Chart
		2-10.1 Parametric Equations
		2-10.2 Wave Impedance
		2-10.3 SWR, Voltage Maxima and Minima
		2-10.4 Impedance to Admittance Transformations
	2-11 Impedance Matching
		2-11.1 Lumped-Element Matching
		2-11.2 Single-Stub Matching
	2-12 Transients on Transmission Lines
		TB 4: EM Cancer Zappers
		2-12.1 Transient Response to a Step Function
		2-12.2 Bounce Diagrams
	Chapter 2 Summary
		Concepts
		Mathematical and Physical Models
		Mathematical and Physical Models (continued)
		Important Terms
	Problems
		Sections 2-1 to 2-4: Transmission-Line Model
		Section 2-5: The Lossless Microstrip Line
		Section 2-6: The Lossless Transmission Line: General Considerations
		Section 2-7: Wave and Input Impedance
		Section 2-8: Special Cases of the Lossless Line
		Section 2-9: Power Flow on a Lossless Transmission Line
		Section 2-10: The Smith Chart
		Section 2-11: Impedance Matching
		Section 2-12: Transients on Transmission Lines
3 Vector Analysis
	3-1 Basic Laws of Vector Algebra
		3-1.1 Equality of Two Vectors
		3-1.2 Vector Addition and Subtraction
		3-1.3 Position and Distance Vectors
		3-1.4 Vector Multiplication
		3-1.5 Scalar and Vector Triple Products
	3-2 Orthogonal Coordinate Systems
		3-2.1 Cartesian Coordinates
		3-2.2 Cylindrical Coordinates
		3-2.3 Spherical Coordinates
	3-3 Transformations between Coordinate Systems
		3-3.1 Cartesian to Cylindrical Transformations
		TB 5: Global Positioning System
		3-3.2 Cartesian to Spherical Transformations
		3-3.3 Cylindrical to Spherical Transformations
		3-3.4 Distance between Two Points
	3-4 Gradient of a Scalar Field
		3-4.1 Gradient Operator in Cylindrical and Spherical Coordinates
		3-4.2 Properties of the Gradient Operator
	3-5 Divergence of a Vector Field
	3-6 Curl of a Vector Field
		3-6.1 Vector Identities Involving the Curl
		3-6.2 Stokes’s Theorem
		TB 6: X-Ray Computed Tomography
	3-7 Laplacian Operator
	Chapter 3 Summary
		Concepts
		Mathematical and Physical Models
		Important Terms
	Problems
		Section 3-1: Basic Laws of Vector Algebra
		Sections 3-2 and 3-3: Coordinate Systems
		Sections 3-4 to 3-7: Gradient, Divergence, and Curl Operators
4 Electrostatics
	4-1 Maxwell’s Equations
	4-2 Charge and Current Distributions
		4-2.1 Charge Densities
		4-2.2 Current Density
	4-3 Coulomb’s Law
		4-3.1 Electric Field Due to Multiple Point Charges
		4-3.2 Electric Field Due to a Charge Distribution
	4-4 Gauss’s Law
	4-5 Electric Scalar Potential
		4-5.1 Electric Potential as a Function of Electric Field
		4-5.2 Electric Potential Due to Point Charges
		4-5.3 Electric Potential Due to Continuous Distributions
		4-5.4 Electric Field as a Function of Electric Potential
		4-5.5 Poisson’s Equation
	4-6 Conductors
		TB 7: Resistive Sensors
		4-6.1 Drift Velocity
		4-6.2 Resistance
		4-6.3 Joule’s Law
	4-7 Dielectrics
		4-7.1 Polarization Field
		4-7.2 Dielectric Breakdown
	4-8 Electric Boundary Conditions
		4-8.1 Dielectric-Conductor Boundary
		4-8.2 Conductor-Conductor Boundary
	4-9 Capacitance
	4-10 Electrostatic Potential Energy
		TB 8: Supercapacitors as Batteries
		TB 9: Capacitive Sensors
	4-11 Image Method
	Chapter 4 Summary
		Concepts
		Important Terms
		Mathematical and Physical Models
	Problems
		Section 4-2: Charge and Current Distributions
		Section 4-3: Coulomb’s Law
		Section 4-4: Gauss’s Law
		Section 4-5: Electric Potential
		Section 4-6: Conductors
		Section 4-8: Boundary Conditions
		Sections 4-9 and 4-10: Capacitance and Electrical Energy
		Section 4-12: Image Method
5 Magnetostatics
	5-1 Magnetic Forces and Torques
		5-1.1 Magnetic Force on a Current-Carrying Conductor
		5-1.2 Magnetic Torque on a Current-Carrying Loop
	5-2 The Biot–Savart Law
		5-2.1 Magnetic Field Due to Surface and Volume Current Distributions
		5-2.2 Magnetic Field of a Magnetic Dipole
		5-2.3 Magnetic Force Between Two Parallel Conductors
	5-3 Maxwell’s Magnetostatic Equations
		5-3.1 Gauss’s Law for Magnetism
		5-3.2 Ampère\'s Law
		TB 10: Electromagnets
	5-4 Vector Magnetic Potential
	5-5 Magnetic Properties of Materials
		5-5.1 Electron Orbital and Spin Magnetic Moments
		5-5.2 Magnetic Permeability
		5-5.3 Magnetic Hysteresis of Ferromagnetic Materials
	5-6 Magnetic Boundary Conditions
	5-7 Inductance
		5-7.1 Magnetic Field in a Solenoid
		5-7.2 Self-Inductance
		TB 11: Inductive Sensors
		5-7.3 Mutual Inductance
	5-8 Magnetic Energy
	Chapter 5 Summary
		Concepts
		Important Terms
		Mathematical and Physical Models
	Problems
		Section 5-1: Magnetic Forces and Torques
		Section 5-2: The Biot–Savart Law
		Section 5-3: Maxwell’s Magnetostatic Equations
		Section 5-4: Vector Magnetic Potential
		Section 5-5: Magnetic Properties of Materials
		Section 5-6: Magnetic Boundary Conditions
		Sections 5-7 and 5-8: Inductance and Magnetic Energy
6 Maxwell’s Equations for Time-Varying Fields
	6-1 Faraday’s Law
	6-2 Stationary Loop in a Time-Varying Magnetic Field
	6-3 The Ideal Transformer
	6-4 Moving Conductor in a Static Magnetic Field
		TB 12: EMF Sensors
	6-5 The Electromagnetic Generator
	6-6 Moving Conductor in a Time-Varying Magnetic Field
	6-7 Displacement Current
	6-8 Boundary Conditions for Electromagnetics
	6-9 Charge-Current Continuity Relation
	6-10 Free-Charge Dissipation in a Conductor
	6-11 Electromagnetic Potentials
		6-11.1 Retarded Potentials
		6-11.2 Time-Harmonic Potentials
	Chapter 6 Summary
		Concepts
		Mathematical and Physical Models
		Important Terms
	Problems
		Sections 6-1 to 6-6: Faraday’s Law and its Applications
		Section 6-7: Displacement Current
		Sections 6-9 and 6-10: Continuity Equation and ChargeDissipation
		Sections 6-11: Electromagnetic Potentials
7 Plane-Wave Propagation
	7-1 Time-Harmonic Fields
		7-1.1 Complex Permittivity
		7-1.2 Wave Equations
	7-2 Plane-Wave Propagation in Lossless Media
		7-2.1 Uniform Plane Waves
		7-2.2 General Relation between E and H
		TB 13: RFID Systems
	7-3 Wave Polarization
		7-3.1 Linear Polarization
		7-3.2 Circular Polarization
		7-3.3 Elliptical Polarization
	7-4 Plane-Wave Propagation in Lossy Media
		7-4.1 Low-Loss Dielectric
		7-4.2 Good Conductor
		TB 14: Liquid Crystal Display (LCD)
	7-5 Current Flow in a Good Conductor
	7-6 Electromagnetic Power Density
		7-6.1 Plane Wave in a Lossless Medium
		7-6.2 Plane Wave in a Lossy Medium
		7-6.3 Decibel Scale for Power Ratios
	Chapter 7 Summary
		Concepts
		Mathematical and Physical Models
		Important Terms
	Problems
		Section 7-2: Plane-Wave Propagation in Lossless Media
		Section 7-3: Wave Polarization
		Section 7-4: Plane-Wave Propagation in Lossy Media
		Section 7-5: Current Flow in Conductors
		Section 7-6: Electromagnetic Power Density
8 Wave Reflection and Transmission
	8-1 Wave Reflection and Transmission at Normal Incidence
		8-1.1 Boundary between Lossless Media
		8-1.2 Transmission-Line Analogue
		8-1.3 Power Flow in Lossless Media
		8-1.4 Boundary between Lossy Media
	8-2 Snell’s Laws
	8-3 Fiber Optics
	8-4 Wave Reflection and Transmission at Oblique Incidence
		TB 15: Lasers
		8-4.1 Perpendicular Polarization
		8-4.2 Parallel Polarization
		8-4.3 Brewster Angle
	8-5 Reflectivity and Transmissivity
	8-6 Waveguides
		TB 16: Bar-Code Readers
	8-7 General Relations for E and H
	8-8 TM Modes in Rectangular Waveguide
	8-9 TE Modes in Rectangular Waveguide
	8-10 Propagation Velocities
	8-11 Cavity Resonators
		8-11.1 Resonant Frequency
		8-11.2 Quality Factor
	Chapter 8 Summary
		Concepts
		Important Terms
		Mathematical and Physical Models
	Problems
		Section 8-1: Wave Reflection and Transmission at Normal Incidence
		Sections 8-2 and 8-3: Snell’s Laws and Fiber Optics
		Sections 8-4 and 8-5: Reflection and Transmission at ObliqueIncidence
		Sections 8-6 to 8-11: Waveguides and Resonators
9 Radiation and Antennas
	9-1 The Hertzian Dipole
		9-1.1 Far-Field Approximation
		9-1.2 Power Density
	9-2 Antenna Radiation Characteristics
		9-2.1 Antenna Pattern
		9-2.2 Beam Dimensions
		9-2.3 Antenna Directivity
		9-2.4 Antenna Gain
		9-2.5 Radiation Resistance
	9-3 Half-Wave Dipole Antenna
		9-3.1 Directivity of λ/2 Dipole
		9-3.2 Radiation Resistance of λ/2 Dipole
		9-3.3 Quarter-Wave Monopole Antenna
	9-4 Dipole of Arbitrary Length
	9-5 Effective Area of a Receiving
		TB 17: Health Risks of EM Fields
	9-6 Friis Transmission Formula
	9-7 Radiation by Large-Aperture Antennas
	9-8 Rectangular Aperture with Uniform Aperture Distribution
		9-8.1 Beamwidth
		9-8.2 Directivity and Effective Area
	9-9 Antenna Arrays
	9-10 N-Element Array with Uniform Phase Distribution
	9-11 Electronic Scanning of Arrays
		9-11.1 Uniform-Amplitude Excitation
		9-11.2 Array Feeding
	Chapter 9 Summary
		Concepts
		Important Terms
		Mathematical and Physical Models
	Problems
		Sections 9-1 and 9-2: Hertizan Dipole and Antenna Radiation Characteristics
		Sections 9-3 and 9-4: Dipole Antennas
		Sections 9-5 and 9-6: Effective Area and Friis Formula
		Sections 9-7 and 9-8: Radiation by Apertures
		Sections 9-9 through 9-11: Antenna Arrays
10 Satellite Communication Systems and Radar Sensors
	10-1 Satellite Communication Systems
	10-2 Satellite Transponders
	10-3 Communication-Link Power Budget
	10-4 Antenna Beams
	10-5 Radar Sensors
		10-5.1 Basic Operation of a Radar System
		10-5.2 Unambiguous Range
		10-5.3 Range and Angular Resolutions
	10-6 Target Detection
	10-7 Doppler Radar
	10-8 Monopulse Radar
	Chapter 10 Summary
		Concepts
		Mathematical and Physical Models
		Important Terms
	Problems
		Sections 10-1 to 10-4: Satellite Communication Systems
		Sections 10-5 to 10-8: Radar Sensors
A: Symbols, Quantities, and Units
B: Material Constants of Some Common Materials
	B-1 Relative Permittivity Of Common Materials
	B-2 Conductivity Of Some Common Materials
	B-3 Relative Permeability Of Some Common Materials
C: Mathematical Formulas
	Trigonometric Relations
	Approximations for Small Quantities
D: Answers to Selected Problems
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
Bibliography
	Electromagnetics
	Antennas and Radiowave Propagation
	Optical Engineering
	Microwave Engineering
Index
	3-dB
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
Useful Information
	Fundamental Physical Constants
	Fundamental SI Units
	Multiple & Submultiple Prefixes
	Gradient, Divergence, Curl, & Laplacian Operators
		Cartesian (Rectangular) Coordinates (X, Y, Z)
		Cylindrical Coordinates ( R , Φ , Z )
		Spherical Coordinates ( R , Θ , Φ )
	Some Useful Vector Identities




نظرات کاربران