ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Functional Nanomaterials for Sensors

دانلود کتاب نانومواد کاربردی برای حسگرها

Functional Nanomaterials for Sensors

مشخصات کتاب

Functional Nanomaterials for Sensors

ویرایش:  
نویسندگان:   
سری: Emerging Materials and Technologies 
ISBN (شابک) : 9781032204956, 9781003263852 
ناشر: CRC Press 
سال نشر: 2023 
تعداد صفحات: 337
[338] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 17 Mb 

قیمت کتاب (تومان) : 41,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 1


در صورت تبدیل فایل کتاب Functional Nanomaterials for Sensors به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نانومواد کاربردی برای حسگرها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Half Title
Emerging Materials and Technologies Series
Functional Nanomaterials for Sensors
Copyright
Contents
Preface
Editors
Contributors
1. Functional Nanomaterials Processing Methods
	1.1. Introduction
	1.2 Thin-Film Processing
		1.2.1 Physical Vapor Deposition (PVD)
		1.2.2 Atomic Layer Deposition (ALD)
		1.2.3 Chemical Deposition (CD)
			1.2.3.1 Chemical Vapor Deposition (CVD)
			1.2.3.2 Electrochemical Deposition (ED)
	1.3 Thick-Film Processing
		1.3.1 Screen-Printing
		1.3.2 Dip-Coating
		1.3.3 Spin-Coating
	1.4 Conclusion and Future Prospective
	References
2. Functional Nanomaterials for Potential Applications
	2.1 Introduction
	2.2 Difference between Functional and Structural NMs Based on Their General Characteristics
	2.3 Strategies to Functionalize a Nanomaterial (NM)
		2.3.1 Chemisorption
		2.3.2 Electrostatic Interactions
		2.3.3 Covalent Interactions
		2.3.4 Non-Covalent Interactions
		2.3.5 Intrinsic Surface Engineering Including Heteroatom Incorporation and Defect Engineering
	2.4 Applications
		2.4.1 Wastewater Treatment: Photodegradation of Organic Pollutants
		2.4.2 Air Pollution
		2.4.3 Soil Pollution
		2.4.4 Biosensing
		2.4.5 Catalysis Industry
			2.4.5.1 Metal-Based Functional NMS for Hydrogen Gas Evolution
			2.4.5.2 Graphene-Based Functional NM for Enhanced Catalytic Properties
	2.5 Current Industrial Overview of Functional Nanomaterials
	2.6 Future Trends and Challenges of Functional Nanomaterials
	2.7 Summary
	References
3. Functional Nanomaterials for Characterization Techniques
	3.1 Introduction
	3.2 Classifi cation of Sensor-Based Characterization
	3.3 Basic Characterization
		3.3.1 X-Ray Diffraction (XRD)
		3.3.2 X-Ray Photoelectron Spectroscopy (XPS)
		3.3.3 Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)
		3.3.4 Raman, Photoluminescence, and Diffuse-Reflectance Spectroscopy
	3.4 Advanced Characterization
		3.4.1 Electrochemical Impedance
		3.4.2 Voltammetry
			3.4.2.1 Cyclic Voltammetry (CV)
			3.4.2.2 Differential Pulse Voltammetry (DPV)
			3.4.2.3 Square Wave Voltammetry (SWV)
			3.4.2.4 Stripping Voltammetry
			3.4.2.5 Anodic Stripping Voltammetry (ASV)
		3.4.3 Potentiometry
	3.5 Conclusion
	References
4. Conducting Polymer Nanocomposites as Sensors
	4.1 Introduction
		4.1.1 Polymer Matrix
		4.1.2 Fillers
	4.2 Synthesis of High-Performance Conducting Polymer Nanocomposites (PNCs)
		4.2.1 Chemical Synthesis of PNCs
			4.2.1.1 Chemical In-Situ Synthesis
			4.2.1.2 Interfacial Synthesis
			4.2.1.3 Solution/Dispersion Mixing
			4.2.1.4 Emulsion Polymerization
		4.2.2 Electrochemical Synthesis
	4.3 Sensor Applications of PNCs
		4.3.1 PNCs in Biosensors
		4.3.2 PNCs in Gas Sensors
	4.4 Conclusion and Future Prospects
	References
5. Carbon-Based Functional Nanomaterials for the Detection of Volatile Organic Compounds
	5.1 Introduction
	5.2 Classifi cation of NMS
	5.3 Preparation of NMS
	5.4 Functionalization of NMS
	5.5 Carbon Nanomaterials (CNMS) and Their Classification
	5.6 Synthesis of CNMS
	5.7 Functionalization of CNMS
		5.7.1 Functionalization of Carbon Nanotube (CNT)
		5.7.2 Functionalization of Graphene (G)
		5.7.3 Functionalization of C60
		5.7.4 Functionalization of Carbon Nanodiamond
		5.7.5 Functionalization of Carbon Nano-Onions (CNOs)
	5.8 Sources of VOCS and Their Classifi cations
	5.9 VOCS Sensing
		5.9.1 VOCs Sensors
		5.9.2 VOC Sensor Principle
		5.9.3 Gas Sensing Characterization
		5.9.4 Functionalized CNT-Based VOC Gas Sensor
		5.9.5 Functionalized Graphene-Based VOC Gas Sensors
		5.9.6 Boron Nitride–Based VOC Gas Sensors
		5.9.7 Functionalized Fullerene-Based VOC Gas Sensors
		5.9.8 Graphdiyne-Based VOC Gas Sensors
		5.9.9 Other Carbon Nanomaterials–Based VOC Gas Sensors
	5.10 Applications
		5.10.1 Environmental Gas Monitoring
		5.10.2 Non-Invasive Disease Diagnosis
	5.11 Conclusions
	References
6. Functional Nanomaterials for Photocatalysis Applications
	6.1 Introduction
	6.2 Nanomaterials for Photocatalysis Application
		6.2.1 Graphene-Based Photocatalysis
			6.2.1.1 Graphene-Based Photocatalytic Hydrogen Production
			6.2.1.2 Graphene-Based Photocatalytic Degradation of Dyes
			6.2.1.3 Graphene-Based Photocatalytic CO2 Reduction
		6.2.2 Graphitic Carbon Nitride (g-C3N4)–Based Photocatalysis
			6.2.2.1 g-C3N4–Based Photocatalytic Hydrogen Production
			6.2.2.2 g-C3N4–Based Photocatalytic Degradation of Dyes
			6.2.2.3 g-C3N4–Based Photocatalytic CO2 Reduction
		6.2.3 ZnO-Based Photocatalysis
			6.2.3.1 ZnO-Based Photocatalytic Hydrogen Production
			6.2.3.2 ZnO-Based Photocatalytic Degradation of Dyes
			6.2.3.3 ZnO-Based Photocatalytic CO2 Reduction
		6.2.4 TiO2 Photocatalysis
			6.2.4.1 TiO2-Based Photocatalytic Degradation of Dyes
			6.2.4.2 TiO2-Based Photocatalytic Hydrogen Production
			6.2.4.3 TiO2-Based Photocatalytic CO2 Reduction
	6.3 Conclusion
	References
7. Functional Nanocomposites for Electrochemical Applications
	7.1 Introduction
	7.2 Electrochemical Methods
	7.3 Electrochemistry
	7.4 CNTs-Based Nanocomposites
	7.5 Polymers Nanocomposites for Electrochemical Applications
	7.6 RGO-Based Nanocomposites for Electrochemical Applications
	7.7 Biochar with Metals or Metal Oxides for Electrochemical Applications
	7.8 MXene with Metals or Metal Oxides for Electrochemical Applications
	7.9 Conclusion
	7.10 Acknowledgment
	References
8. Functional Nanomaterials for Chemical Sensors
	8.1 Introduction
	8.2 Properties of Functional Nanomaterials
		8.2.1 Unique Features of Functional Nanomaterials
		8.2.2 Advantages of the Functional Nanomaterials for Chemical Sensors
	8.3 Synthesis and Chemical Functionalization of Nanomaterials
		8.3.1 Top-Down
		8.3.2 Bottom-Up
	8.4 Overview of the Development of Functional Nanomaterials for Chemical Sensors
		8.4.1 Functional Nanomaterials for Electrochemical Sensors
		8.4.2 Functional Nanomaterials for Optical Sensors
		8.4.3 Functional Nanomaterials for Electrical Sensors
		8.4.4 Functional Nanomaterials for Mass-Sensitive Sensors
	8.5 Challenges and Prospects of the Functional Nanomaterials Field for Chemical Sensor Applications
	8.6 Conclusion
	References
9. Functional Nanomaterials for Gas Sensors
	9.1 Introduction
	9.2 Need for Gas Sensors
		9.2.1 Critical Industries
		9.2.2 Oxygen Gas Sensors
		9.2.3 Automotive and Transport Industry
		9.2.4 Household Applications
	9.3 Categories of Gas Sensors
	9.4 Technological Development in Gas Sensors
	9.5 Types of Nanostructured Gas Sensors
		9.5.1 Gas Sensors Made of Carbon Black
		9.5.2 Carbon Nanofi ber Gas Sensors
		9.5.3 Carbon Nanotube Gas Sensors
		9.5.4 Graphene Gas Sensors
		9.5.5 0-D, 1-D, 2-D Nanomaterials Gas Sensors: General Aspects
	9.6 Conclusion
	References
10. Electronic Devices Including Nanomaterial-Based Sensors
	10.1 Introduction
	10.2 Nanosensors
	10.3 Electronic Devices–Based Nanosensors
	10.4 Applications of Nanosensors in Electronic Devices
		10.4.1 Electrometric Devices
		10.4.2 Biomedical Devices
		10.4.3 Aeronautic Electronic Devices
		10.4.4 Nanosensor Electronic Devices Used in the Military
		10.4.5 Health Monitoring Electronic Devices
		10.4.6 Insect Killing Devices
		10.4.7 Transportation and Communication Purpose Usable Devices
	10.5 Benefits of Using Nanosensors in Electronic Devices
		10.5.1 Sensitivity
		10.5.2 Linearity in Electronic Devices
		10.5.3 Limit of Detection (LOD)
		10.5.4 Enhances the Selectivity
		10.5.5 Response Time
		10.5.6 Good Reproducibility, Repeatability, and Stability
	10.6 Advancement of Electronic Devices and Challenges with Nanosensors
	10.7 Conclusion and Future Prospects
	References
11. DNA-Aptamer–Based Electrochemical Biosensors for the Detection of Thrombin: Fundamentals and Applications
	11.1 Introduction
	11.2 Different Types of Biosensors
		11.2.1 Optical Biosensors
		11.2.2 Electrochemical Biosensors
		11.2.3 Mass-Based Biosensors
	11.3 Applications of Biosensors
		11.3.1 Medicine, Clinical, and Diagnostic Applications
		11.3.2 Environmental Monitoring
		11.3.3 Industrial Applications
		11.3.4 Food Industry
	11.4 Electrochemical DNA-Aptasensors
		11.4.1 Nanomaterials Used in Electrochemical DNA-Aptasensors
		11.4.2 Surface Characterization and Electrochemical Techniques Used in Electrochemical DNA-Aptasensors
	11.5 Electrochemical DNA-Aptasensors for Thrombin Detection
		11.5.1 Characteristics of TBA Important to Build Electrochemical DNA-Aptasensors
		11.5.2 Fundamental Strategies of Immobilization of TBA in EC DNA-Aptasensors
			11.5.2.1 Configuration 1
			11.5.2.2 Configuration 2
			11.5.2.3 Configuration 3
		11.5.3 Applications of Nanomaterials in Electrochemical DNA-Aptasensors
	11.6 Conclusions
	11.7 Acknowledgment
	References
12. Functional Nanomaterials for Biosensors and Bio-Applications
	12.1 Introduction
	12.2 Methods of Nanoparticles Synthesis
	12.3 Metal Nanomaterials in Sensing
	12.4 Carbon-Based Nanomaterials as Biosensors
	12.5 DNA-Modifi ed Nanoparticles
	12.6 Protein-Functionalized Nanoparticles
		12.6.1 Silk Protein Fibroin
		12.6.2 Human Serum Albumin
		12.6.3 Gliadin
		12.6.4 Gelatin
	12.7 Self-Healing Biomaterials via Nanomaterials
	12.8 Nanomaterials for Tissue Engineering
	12.9 Conclusions
	References
13. Functional Nanomaterials for Health and Environmental Issues
	13.1 Introduction to One Health
	13.2 Nanomaterials Sensors for Health
		13.2.1 Introduction
		13.2.2 Introduction to Nanomaterials in Medicine
			13.2.2.1 Properties at the Nanoscale
			13.2.2.2 Synthesis of Nanomaterials
			13.2.2.3 Coating of Nanomaterials
		13.2.3 Applications in Medicine
			13.2.3.1 Imaging
			13.2.3.2 Biosensing
		13.2.4 Conclusion
	13.3 Nanomaterials Sensors Environment Remediation
		13.3.1 Introduction
		13.3.2 Azo Dyes Environmental Remediation by Nanomaterials
			13.3.2.1 Methyl Orange
			13.3.2.2 Reactive Black 5
		13.3.3 T oluidine and Methylene Blue, Rhodamine B Environmental Remediation
			13.3.3.1 Toluidine Blue
			13.3.3.2 Methylene Blue
			13.3.3.3 Rhodamine B
		13.3.4 Multi Dyes Degradation
	13.4 Conclusion
	References
14. Implications of the Use of Functional Nanomaterials for the Environment and Health: Risk Assessment and Challenges
	14.1 Introduction
	14.2 State of the Art of EU Regulation Related to Using Functional Nanomaterials in Sensing
	14.3 Risk Assessment
		14.3.1 Risk Assessment Techniques
		14.3.2 Risk Assessment Applied to Nanomaterials
	14.4 Nanomaterials in the Environment
		14.4.1 Natural Nanomaterials in the Environment
		14.4.2 Synthetic Nanomaterials in the Environment
	14.5 Nanomaterials’ Effects on the Environment
		14.5.1 Positive Effects
		14.5.2 Negative Effects
	14.6 Human Health Impacts of Nanomaterials Exposure
		14.6.1 Exposure Pathways to Humans
			• Inhalation
			• Ingestion
			• Dermal Penetration
			• Injection
			• Ocular Exposure
		14.6.2 Human Health Impacts
			• Silver Nanoparticles (AgNPs)
			• Carbon Nanotubes (CNTs) and Graphene
			• Silica Nanoparticles (SiNPs)
			• Titanium Dioxide Nanoparticles (TiO 2 NPs)
			• Gold Nanoparticles (AuNPs)
	14.7 Risk Assessment of Functional Nanomaterials
		14.7.1 Regulatory Framework for Nanomaterials
		14.7.2 Frameworks of Risk Assessment of Nanomaterials
			14.7.2.1 Risk Assessment Strategies Mainly Directed toward Regulatory Submission
				• NanoRiskCat
				• DF4nanoGrouping Framework
				• MARINA Risk Assessment Strategy
				• Nanomaterial Categorization for Assessing Risk Potential
				• A Strategy toward Grouping and Read-Across
				• Risk Assessment and Grouping Strategy Based on Clouds of Predefined Test Strategies
				• Risk Banding Framework
				• Sustainable Nanotechnology Decision Support System (SUNDS)
			14.7.2.2 Risk Assessment Strategies Mainly Directed toward the Innovation Chain
				• LICARA NanoSCAN
				• Alternatives Assessments for Nanomaterials
				• NANoREG D6.04
	14.8 Challenges Concerning Risk Assessment of Nanomaterials
		14.8.1 Regulatory Framework
		14.8.2 Specific Issues Related to Risk Assessment
		14.8.3 Improvement of the Feasibility of Risk Assessment of Nanomaterials
		14.8.4 Uncertainty and Efficiency in Risk Assessment Frameworks
	14.9 Conclusions
	References
Index




نظرات کاربران