دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مواد ویرایش: نویسندگان: Chen Wu. Jiaying Jin سری: ISBN (شابک) : 1032106352, 9781032106359 ناشر: CRC Press سال نشر: 2022 تعداد صفحات: 290 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 28 مگابایت
در صورت تبدیل فایل کتاب Frontiers in Magnetic Materials: From Principles to Material Design and Practical Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مرزها در مواد مغناطیسی: از اصول تا طراحی مواد و کاربردهای عملی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Title Page Copyright Page Table of Contents Author Bio Part I: Fundamental Magnetism Chapter 1: Introduction to Magnetics 1.1 Introduction to Magnetism and Magnetic Materials 1.2 Views on Magnetism and Two Unit Systems References Further Reading Chapter 2: Origin and Categories of Magnetisms 2.1 Atomic Origin of Magnetisms 2.1.1 Arrangement of Electrons 2.1.2 Electron Orbital and Spin Moment 2.1.3 Total Magnetic Moment of the Atom 2.2 Five Types of Magnetisms 2.2.1 Diamagnetism 2.2.2 Paramagnetism 2.2.3 Antiferromagnetism 2.2.4 Ferromagnetism 2.2.5 Ferrimagnetism References Further Reading Chapter 3: Important Parameters and Magnetic Measurements 3.1 Basics of Magnetization and Magnetic Parameters 3.2 Magnetic Measurement Techniques 3.2.1 Measurement of Magnetization 3.2.2 Measurements Based on Magnetic-X Effects 3.2.2.1 Measurements Based on Magneto-Optical Effect 3.2.2.2 Measurements Based on Magneto-Electric Effect 3.2.2.3 Measurements Based on Magneto-Force Effect 3.2.2.4 Measurements Based on Magnetic Resonance References Further Reading Part II: Hard Magnetic Materials Chapter 4: Introduction to Hard Magnetic Materials 4.1 Performance Requirements for Hard Magnetic Materials 4.1.1 Intrinsic Magnetic Properties 4.1.2 Hysteresis Loop 4.1.3 Remanence 4.1.4 Coercivity 4.1.5 Energy Product 4.1.6 Temperature Coefficients 4.2 Development of Hard Magnetic Materials 4.3 Applications of Hard Magnetic Materials 4.3.1 Hard Magnetic Materials for Wind Power Generation 4.3.2 Hard Magnetic Materials for New Energy Vehicle 4.3.3 Hard Magnetic Materials for Information Technology 4.3.4 Hard Magnetic Materials for Industrial Robot References Further Reading Chapter 5: Rare-Earth-Free Hard Magnetic Materials 5.1 Hard Ferrites 5.1.1 Introduction 5.1.2 Crystal Structure and Magnetic Properties 5.1.3 Synthesis Techniques 5.1.3.1 Standard Ceramic Method 5.1.3.2 Sol-Gel Method 5.1.3.3 Coprecipitation Method 5.1.3.4 Hydrothermal Synthesis 5.1.3.5 Other Methods 5.1.4 Substituted M-Type Ferrites 5.1.5 Prospects and Future Challenges 5.2 Alnico 5.2.1 Introduction 5.2.2 Timeline of Alnico Development 5.2.3 Prospects and Future Challenges References Further Reading Chapter 6: Rare-Earth-Based Hard Magnetic Materials: SmCo 6.1 Developments of RECo Hard Magnetic Materials 6.2 1:5-Type Permanent Magnets 6.3 2:17-Type Permanent Magnets 6.3.1 Phase Constituents 6.3.2 Fabrication Procedures 6.3.3 Latest Developments References Further Reading Chapter 7: Rare-Earth-Based Hard Magnetic Materials: NdFeB 7.1 Introduction to NdFeB 7.2 Research Focuses of NdFeB 7.2.1 High-Coercivity REFeB with Less Dy/Tb 7.2.2 Low-Cost REFeB with More La/Ce/Y 7.3 Fabrication of NdFeB Sintered Magnets 7.3.1 Strip Casting 7.3.2 Hydrogen Decrepitation 7.3.3 Jet Milling 7.3.4 Alignment and Compressing 7.3.5 Sintering 7.3.6 Post-Sinter Annealing 7.3.7 Commercial NdFeB Sintered Magnets 7.4 Fabrication of NdFeB Bonded Magnets 7.5 Surface Coating References Further Reading Chapter 8: Other Emerging Hard Magnetic Materials 8.1 Nanocomposites 8.1.1 Introduction 8.1.2 Timeline of Nanocomposites Development 8.1.3 Synthesis Techniques 8.1.4 Challenges and Perspectives 8.2 SmFeN 8.2.1 Crystal Structure 8.2.2 Nitriding Mechanism 8.2.3 Preparation Techniques 8.3 Mn-Based Alloys 8.3.1 MnBi Alloy 8.3.2 MnAl and MnAlC Alloys References Further Reading Part III: Soft Magnetic Materials Chapter 9: Introduction to Soft Magnetic Materials 9.1 Applications of Soft Magnetic Materials 9.2 Performance Requirements for Soft Magnetic Materials 9.3 Development of Soft Magnetic Materials References Further Reading Chapter 10: Soft Magnetic Alloys 10.1 Crystalline Magnetic Alloys 10.1.1 FeSi-Based Magnetic Alloys 10.1.2 FeNi-Based Magnetic Alloys 10.1.3 Future Design of Crystalline Magnetic Alloys 10.2 Amorphous Magnetic Alloys 10.3 Nanocrystalline Magnetic Alloys 10.3.1 Finemet (FeCuNbSiB) 10.3.2 Nanoperm (FeMBCu, M = Zr, Nb, Hf) 10.3.3 Hitperm (FeCoMBCu, M = Zr, Nb, Hf) 10.3.4 Nanomet (FeSiBPCu) 10.3.5 Future Design of Nanocrystalline Magnetic Alloys References Further Reading Chapter 11: Soft Magnetic Composites 11.1 Powder Production and Size Distribution 11.2 Insulation Coating 11.2.1 Organic Coatings 11.2.2 Inorganic Coatings 11.2.3 Hybrid Organic–Inorganic Coatings 11.3 Compaction 11.4 Annealing 11.5 Challenges and Perspectives References Further Reading Chapter 12: Soft Magnetic Ferrites 12.1 Basics of Soft Magnetic Ferrites 12.2 Crystal Structure of Soft Ferrites 12.3 Power Loss of Soft Ferrites 12.4 Applications of Soft Ferrites 12.4.1 High Frequency Ferrites 12.4.2 High Permeability Ferrites 12.4.3 Power Ferrites 12.5 Manufacturing Technology of Soft Ferrites 12.6 Future Perspectives of Soft Ferrites References Further Reading Part IV: Other Functional Magnetic Materials Chapter 13: Materials with Magnetic-X Effects 13.1 Magneto-Optical Materials 13.1.1 Magneto-Optical Effects 13.1.2 Materials Based on Magneto-Optical Effects 13.1.2.1 Magneto-Optical Glass 13.1.2.2 Magneto-Optical Crystals 13.1.2.3 Magneto-Optical Ceramics 13.1.3 Applications 13.1.3.1 Magneto-Optical Recording 13.1.3.2 Magneto-Optical Modulator 13.1.3.3 Magneto-Optical Isolator 13.1.3.4 Magneto-Optical Switcher 13.2 Magnetostrictive Materials 13.2.1 Magnetostriction 13.2.2 Materials Based on Magnetostrictive Effects 13.2.2.1 Terfenol-D 13.2.2.2 Galfenol 13.2.3 Applications 13.3 Magnetocaloric Materials 13.3.1 Magnetocaloric Effect 13.3.2 Materials Based on Magnetocaloric Effect 13.3.2.1 Gd-Based Alloys 13.3.2.2 Mn-Based Alloys 13.3.2.3 Heusler Alloys 13.3.2.4 LaFeSi Alloys References Further Reading Chapter 14: Magnetic Materials for Electromagnetic Wave Absorption 14.1 Introduction to Electromagnetic Wave Absorption 14.1.1 Impedance Matching 14.1.2 Attenuation Capability 14.1.2.1 Dielectric Loss 14.1.2.2 Magnetic Loss 14.1.3 Evaluation of the Absorption Performance 14.2 Developments of Magnetic Absorbers 14.2.1 Ferrites for Electromagnetic Wave Absorption 14.2.2 Metallic Magnetic Composites for Electromagnetic Wave Absorption 14.3 Future Work and Perspectives References Further Reading Chapter 15: Magnetic Materials for Biomedicine, Catalysis and Others 15.1 Magnetic Materials for Biomedicine 15.1.1 Magnetic Targeting 15.1.2 Magnetic Resonance Imaging 15.1.3 Magnetic Particle Imaging 15.1.4 Magnetic Hyperthermia Therapy 15.2 Magnetic Materials for Catalysis 15.2.1 Magnetic Separation for Catalyst Recycling 15.2.2 Direct Involvement of Magnetic Materials in the Catalytic Process 15.2.3 Indirect Involvement of Magnetic Materials in the Catalytic Process 15.3 Magnetic Materials for Other Areas 15.3.1 Micro-Magnetic Robots 15.3.2 Magnetic Fluids and Magnetic Fluidic Platform 15.3.3 Magneto-Electric Vibration Sensor 15.4 Summary and Perspectives References Further Reading