دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.]
نویسندگان: Jean Zinn-Justin
سری:
ISBN (شابک) : 2019930266, 9780198787754
ناشر: Oxford University Press
سال نشر: 2019
تعداد صفحات: 544
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 5 Mb
در صورت تبدیل فایل کتاب From Random Walks to Random Matrices - Selected Topics in Modern Theoretical Physics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب از پیاده روی تصادفی تا ماتریس های تصادفی - موضوعات منتخب در فیزیک نظری مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
فیزیک نظری سنگ بنای فیزیک مدرن است و پایه و اساس تمام علوم کمی مدرن را فراهم می کند. هدف آن توصیف همه پدیده های طبیعی با استفاده از نظریه ها و مدل های ریاضی است و در نتیجه درک ما از ماهیت بنیادی جهان را توسعه می دهد. این کتاب مروری بر حوزه های اصلی را ارائه می دهد که تحولات اخیر در فیزیک نظری مدرن را پوشش می دهد. هر فصل یک موضوع کلیدی جدید را معرفی می کند و بحث را به شیوه ای مستقل توسعه می دهد. در عین حال موضوعات انتخاب شده دارای مضامین مشترکی هستند که در سرتاسر کتاب اجرا می شوند که بحث های مستقل را به هم متصل می کنند. موضوعات اصلی گروه عادی سازی مجدد، نقاط ثابت، جهانی بودن و حد پیوستگی است که کار را باز و به پایان می رساند. توسعه فیزیک نظری مدرن به مفاهیم مهم و ابزارهای ریاضی جدید نیاز داشته است، نمونههای مورد بحث در کتاب شامل انتگرالهای مسیر و میدان، مفهوم نظریههای میدان کوانتومی یا آماری مؤثر، نظریههای گیج، و ساختار ریاضی بر اساس برهمکنشهای موجود در این کتاب است. فیزیک ذرات بنیادی، از جمله مسائل کوانتیزاسیون و ناهنجاری ها، معادلات دینامیکی تصادفی، و جمع سری های آشفته.
Theoretical physics is a cornerstone of modern physics and provides a foundation for all modern quantitative science. It aims to describe all natural phenomena using mathematical theories and models, and in consequence develops our understanding of the fundamental nature of the universe. This books offers an overview of major areas covering the recent developments in modern theoretical physics. Each chapter introduces a new key topic and develops the discussion in a self-contained manner. At the same time the selected topics have common themes running throughout the book, which connect the independent discussions. The main themes are renormalization group, fixed points, universality, and continuum limit, which open and conclude the work. The development of modern theoretical physics has required important concepts and novel mathematical tools, examples discussed in the book include path and field integrals, the notion of effective quantum or statistical field theories, gauge theories, and the mathematical structure at the basis of the interactions in fundamental particle physics, including quantization problems and anomalies, stochastic dynamical equations, and summation of perturbative series.
Cover From Random Walks to Random Matrices: Selected Topics in Modern Theoretical Physics Copyright Preface Contents 1 The random walk: Universality and continuum limit 1.1 Random walk invariant under space and discrete time translations 1.1.1 Translation invariant random walk in continuum space 1.2 Fourier representation 1.2.1 Generating function of cumulants 1.3 Random walk: Asymptotic behaviour from a direct calculation 1.3.1 Continuum time limit 1.4 Corrections to continuum limit 1.5 Random walk: Fixed points of transformations and universality 1.5.1 Time scale transformation and renormalization 1.5.2 Fixed points: generic situation: w1 6= 0 1.5.3 Centred distribution 1.6 Local and global stability of fixed points 1.6.1 General analysis and RG terminology 1.6.2 Fixed point stability: w1 6= 0 1.6.3 Fixed point stability: w1 = 0 1.6.4 Random walk on a lattice of points with integer coordinates 1.7 Brownian motion and path integral 2 Functional integration: From path to field integrals 2.1 Random walk, Brownian motion and path integral 2.1.1 Continuum limit and path integral 2.1.2 Positive measure and correlation functions 2.1.3 Brownian paths 2.1.4 Explicit calculation 2.2 The Wiener measure and statistical physics 2.2.1 Classical statistical physics 2.2.2 Quantum statistical physics 2.3 Generalization 2.3.1 Path integral and local Markov process 2.3.2 Path integrals and statistical physics 2.4 Gaussian path integrals: The quantum harmonic oscillator 2.5 Path integrals: Perturbation theory 2.5.1 Gaussian expectation values and Wick’s theorem 2.5.2 Path integral: Perturbative calculation 2.6 Path integral: Quantum time evolution 2.7 Barrier penetration in the semi-classical limit 2.8 Path integrals: A few generalizations 2.9 Path integrals for bosons and fermions 2.9.1 Holomorphic formalism and bosons 2.9.2 Grassmann path integrals and fermions 2.10 Field integrals: New issues 2.10.1 More general quantum field theories 2.10.2 Regularization and effective field theories 2.10.3 Renormalization and renormalization group 3 The essential role of functional integrals in modern physics 3.1 Classical physics: The mystery of the variational principle 3.1.1 Euler–Lagrange equations 3.1.2 The particle in a static magnetic field 3.1.3 Electromagnetism and Maxwell’s equations 3.1.4 General Relativity 3.1.5 Quantum mechanics and the variational principle 3.2 Quantum evolution: From Hamiltonian to Lagrangian formalism 3.2.1 Quantum evolution 3.2.2 Relativistic quantum field theory 3.3 From quantum evolution to statistical physics 3.3.1 The single particle on an axis 3.3.2 Quantum field theory: Quantum and classical statistical physics 3.4 Statistical models at criticality and quantum field theory 3.5 Barrier penetration, vacuum instability: Instanton calculus 3.6 Large order behaviour and Borel summability: Critical exponents 3.7 Quantization of gauge theories 3.7.1 QED 3.7.2 Quantization of non-Abelian gauge theories 3.7.3 Covariant quantization: Faddeev–Popov’s method 3.8 Numerical simulations in quantum field theory 3.9 Quantization of the non-linear σ-model 3.10 N-component fields: Large N techniques 4 From infinities in quantum electrodynamics to the general renormalization group 4.1 QFT, RG: Some major steps 4.2 QED and the problem of infinities 4.2.1 First calculations: The problem of infinities 4.2.2 Infinities and charged scalar bosons 4.3 The renormalization strategy 4.4 The nature of divergences and the meaning of renormalization 4.5 QFT and RG 4.5.1 The triumph of renormalizable QFT: The Standard Model 4.6 Critical phenomena: Other infinities 4.7 The failure of scale decoupling: The RG idea 4.7.1 Scale decoupling in physics 4.7.2 The RG idea 4.8 Phase transitions: Exact RG in the continuum 4.8.1 The exact RG 4.8.2 Asymptotic or perturbative RG equations 4.9 Effective field theory: From critical phenomena to particle physics 5 Renormalization group: From a general concept to numbers 5.1 Scale decoupling in physics: A basic paradigm 5.2 Fundamental microscopic interactions 5.3 Macroscopic phase transitions 5.3.1 The RG idea: Simple ferromagnetic systems 5.3.2 Fixed points 5.3.3 Scale non-decoupling and fixed points, a geometric analogue: Fractals 5.4 Fixed points: The QFT framework 5.4.1 The Gaussian fixed point 5.4.2 QFT perturbative RG 5.5 RG, correlation functions and scaling relations 5.6 Exponents: Practical QFT calculations 5.7 Results for three-dimensional critical exponents 6 Critical phenomena: The field theory approach 6.1 Universality and RG 6.1.1 Quantum field theory: Renormalization and universality 6.1.2 Macroscopic continuous phase transitions: Universality 6.1.3 From Wilson’s momentum-shell integration to functional RG equations 6.2 RG in the continuum: Abstract formulation 6.3 Effective field theory 6.4 The Gaussian field theory 6.4.1 The Gaussian critical theory 6.4.2 The non-critical Gaussian theory 6.4.3 Short distance singularities 6.5 Gaussian fixed point and Gaussian renormalization 6.5.1 Perturbing the Gaussian fixed point (d > 2) 6.5.2 Gaussian renormalization 6.6 Statistical scalar field theory: Perturbation theory 6.6.1 The perturbed Gaussian or quasi-Gaussian model 6.7 Dimensional continuation and regularization 6.7.1 Dimensional continuation 6.7.2 Dimensional regularization and ε-expansion 6.8 Perturbative RG 6.8.1 Critical theory: The renormalization theorem 6.8.2 RG equations for the critical theory 6.8.3 RG equations in the critical domain above Tc 6.8.4 Renormalized RG equations 6.9 RG equations: Solutions 6.10 Wilson–Fisher’s fixed point: ε-Expansion 6.10.1 The Ising class fixed point from the φ4 field theory 6.10.2 ε-Expansion: A few general results 6.11 Critical exponents as ε-expansions 6.12 Three-dimensional exponents: Summation of the ε-expansion 7 Stability of renormalization group fixed points and decay of correlations 7.1 Models with only one correlation length 7.2 Cubic anisotropy, a model with two couplings 7.2.1 RG and fixed points 7.2.2 Linearized flow and eigenvalues 7.2.3 Corresponding values of the exponent η 7.3 General quartic Hamiltonian: RG functions 7.4 Running coupling constants and gradient flows 7.4.1 The gradient property of the RG β-functions 7.4.2 A few consequences 7.5 Fixed point stability and value of the potential 7.5.1 First derivative 7.5.2 Second derivative 7.6 Fixed point stability and field dimension 8 Quantum field theory: An effective theory 8.1 Effective local field theory: The scalar field 8.2 Perturbative assumption and Gaussian renormalization 8.2.1 Gaussian renormalization and dimensional analysis 8.2.2 Classification of interactions and the fine tuning problem 8.2.3 Renormalizable field theory 8.2.4 Non-renormalizable interactions 8.2.5 Renormalizable field theories and RG: The example of the φ44 field theory 8.3 Fundamental interactions at the microscopic scale 8.4 Field theory with a large mass: An explicit toy model 8.4.1 Local expansion 8.5 An effective field theory: The Gross–Neveu model 8.5.1 The GNY model 8.5.2 Symmetric phase: The effective GN model 8.5.3 The GN model: Four dimensions 8.5.4 The GN model in two dimensions 8.5.5 Beyond perturbation theory: d > 2 8.6 Non-linear σ-model: Another effective field theory 8.6.1 The O(N) symmetric (˚2)2 field theory in the ordered phase 8.6.2 The non-linear σ-model 9 The non-perturbative renormalization group 9.1 Intuitive RG formulation 9.2 Non-perturbative RG equations 9.2.1 General local statistical field theory 9.2.2 Functional RG equations 9.2.3 Perturbative fixed points 9.3 Partial field integration: Some identities 9.3.1 A basic identity 9.3.2 Other form of the identity: Partial integration 9.4 Partial field integration in differential form 10 O(N) vector model in the ordered phase: Goldstone modes 10.1 Classical lattice spin model and regularized non-linear σ-model 10.1.1 Low temperature limit 10.1.2 Local parametrization 10.2 Perturbative or low temperature expansion 10.2.1 The π-integration 10.2.2 The configuration energy and the measure 10.2.3 The propagator 10.2.4 Gaussian fixed point and perturbations 10.3 Zero momentum or IR divergences 10.3.1 IR regularization 10.4 Formal continuum limit: The non-linear σ-model 10.4.1 Correlation functions with σ insertions 10.5 The continuum theory: Regularization 10.5.1 Dimensional regularization 10.5.2 Derivative or Pauli–Villars’s regularizations 10.6 Symmetry and renormalization 10.6.1 WT identities and master equation 10.6.2 Renormalization constants and renormalized action 10.7 Correlation functions in dimension d = 2 + ε at one loop 10.7.1 The field expectation value at one-loop order 10.7.2 The two-point vertex function at one-loop order 10.8 RG equations 10.8.1 RG functions: One-loop calculation 10.9 Zeros of the RG β-function: Fixed points 10.10 Correlation functions: Scaling form below Tc 10.10.1 Critical exponents 10.10.2 Non-linear σ-model and (σ2)2 field theory 10.11 Linear formulation 10.11.1 IR divergences and O(N) symmetric functions 10.12 Two dimensions 10.12.1 Non-Abelian group: N > 2 10.12.2 O(N) invariant functions and IR singularities 10.12.3 The Abelian SO(2) model 11 Gauge invariance and gauge fixing 11.1 Gauge invariance: A few historical remarks 11.2 Variational principle, charged particle and gauge invariance 11.2.1 Euler–Lagrange equations 11.2.2 The motion of the charged particle: The principle of gauge invariance 11.2.3 Enforcing gauge invariance: A dynamic principle 11.2.4 The classical Hamiltonian in a magnetic and electric field 11.3 Gauge invariance: A charged quantum particle 11.3.1 Quantum Hamiltonian in a static magnetic field and gauge invariance 11.3.2 The Schr¨odinger representation 11.3.3 Time-dependent gauge transformations 11.4 Evolution of a charged particle: Path integral representation 11.5 Classical electromagnetism and Maxwell’s equations 11.6 Gauge fixing in classical gauge theories 11.7 QED 11.7.1 Gauge field coupled to a conserved current 11.7.2 Charged matter fields 11.7.3 Parallel transport 11.8 Non-Abelian gauge theories 11.8.1 Classical field theory 11.8.2 Gauge fields and differential geometry 11.9 Quantization of non-Abelian gauge theories: Gauge fixing 11.9.1 Gauge fixing in gauge field integrals 11.10 General Relativity 12 The Higgs boson: A major discovery and a problem 12.1 Perturbative quantum field theory: The construction 12.2 Spontaneous symmetry breaking 12.2.1 Relativistic quantum field theory 12.3 Non-Abelian gauge theories 12.3.1 Classical theory 12.3.2 The problem of quantization 12.4 The classical Abelian Landau–Ginzburg–Higgs mechanism 12.5 Abelian and non-Abelian Higgs mechanism 12.6 Non-Abelian gauge theories: Quantization and renormalization 12.6.1 Non-Abelian gauge theories: Renormalization 12.6.2 BRST symmetry 12.7 The self-coupled Higgs field: A simple RG analysis 12.7.1 The self-coupling approximation 12.8 The Gross–Neveu–Yukawa model: A Higgs–top toy model 12.8.1 The GNY model 12.8.2 RG equations and mass ratio 12.9 GNY model: The general RG flow at one loop 12.10 The fine tuning issue 13 Quantum chromodynamics: A non-Abelian gauge theory 13.1 Geometry of gauge theories: Parallel transport 13.1.1 Gauge transformations, gauge invariance and parallel transport 13.1.2 Gauge theories in the continuum 13.2 Gauge invariant action 13.2.1 Component form 13.3 Hamiltonian formalism. Quantization in the temporal gauge 13.3.1 Classical field equations 13.3.2 Weyl’s or temporal gauge: Classical theory 13.3.3 Quantum gauge theory in the temporal gauge 13.3.4 Covariant generalized Landau’s gauge 13.3.5 BRST symmetry 13.4 Perturbation theory, regularization 13.4.1 Regularization 13.4.2 WT identities and renormalization 13.5 QCD: Renormalization group 13.6 Anomalies: General remarks 13.7 QCD: The semi-classical vacuum and instantons 13.7.1 The θ-vacuum and instantons 13.7.2 Physics application: The solution of the U(1) problem 13.8 Lattice gauge theories: Generalities 13.8.1 Gauge invariance and parallel transport on the lattice 13.9 Pure lattice gauge theory 13.9.1 Gauge invariant action and partition function 13.9.2 Low coupling analysis 13.10 Wilson loop and the confinement property 13.10.1 Wilson’s loop in continuum: d-Dimensional Abelian gauge theories 13.10.2 Non-Abelian gauge theories 13.11 Fermions on the lattice. Chiral symmetry 13.11.1 Numerical methods: Computer simulations 14 From BRST symmetry to the Zinn-Justin equation 14.1 Non-Abelian gauge theories: Classical field theory 14.1.1 Gauge transformations and gauge fields 14.1.2 Covariant derivatives and curvature 14.2 Non-Abelian gauge theories: The quantized action 14.2.1 Quantized gauge action: The field integral viewpoint 14.3 BRST symmetry of the quantized action 14.3.1 BRST symmetry 14.4 The ZJ equation and remormalization 14.4.1 Regularization 14.4.2 Renormalization with counter-terms 14.4.3 ZJ equation 14.5 The ZJ equation: A few general properties 14.5.1 Special solutions 14.5.2 Perturbative solutions 14.5.3 Canonical invariance 14.5.4 Infinitesimal canonical transformations 14.6 BRST symmetry: The algebraic origin 14.6.1 BRST symmetry 14.6.2 BRST symmetry and group elements 15 Quantum field theory: Asymptotic safety 15.1 RG and consistency 15.1.1 The non-Abelian gauge theory revolution: Asymptotic freedom 15.1.2 Wilson’s theory of critical phenomena 15.2 Super-renormalizable effective field theories: The (φ2)2 example 15.2.1 The renormalized field theory and Callan–Symanzik equations 15.2.2 The effective critical field theory 15.3 A renormalizable field theory: The (φ2)2 theory in dimension 4 15.4 The non-linear σ-model 15.4.1 Dimension 2 15.4.2 Higher dimensions 15.5 The Gross–Neveu model 15.6 QCD 15.7 General interactions and summary 16 Symmetries: From classical to quantum field theories 16.1 Symmetries and regularization 16.1.1 UV divergences 16.1.2 Symmetries and regularization 16.2 Higher derivatives and momentum cut-off regularization 16.2.1 Scalar fields: Higher derivative regularization 16.2.2 Schwinger’s proper time regularization 16.2.3 Regularization: Spin 1/2 fermions 16.2.4 Regularization and determinants 16.2.5 Application to global linear symmetries 16.3 Regulator fields 16.3.1 Scalar fields 16.3.2 Fermions 16.4 Abelian gauge theory, the theoretical framework of QED 16.4.1 Charged fermions in a gauge field background 16.4.2 The fermion determinant 16.4.3 Boson determinant in a gauge background 16.4.4 The gauge field propagator 16.5 Non-Abelian gauge theories 16.6 Dimensional regularization and chiral symmetry 16.6.1 Dimensional regularization 16.6.2 The problem with fermions: The example of dimension 4 16.7 Lattice regularization 16.7.1 Scalar bosons on the lattice 16.7.2 Fermions, chiral symmetry and the doubling problem 16.7.3 Gauge theories: Gauge fields and scalar bosons 17 Quantum anomalies: A few physics applications 17.1 Electromagnetic decay of the neutral pion and Abelian anomaly 17.1.1 Abelian axial current and Abelian vector gauge field 17.1.2 Regulator fields and explicit anomaly calculation 17.1.3 The electromagnetic decay of the neutral pion 17.1.4 Chiral gauge theories 17.2 A two-dimensional illustration: The Schwinger model 17.2.1 The classical theory 17.2.2 Quantum theory: Spectrum and anomaly 17.2.3 Two dimensions: The chiral anomaly 17.2.4 Currents: Field equations, anomaly and spectrum 17.3 Abelian axial current and non-Abelian gauge fields 17.3.1 The axial anomaly 17.3.2 Anomaly and eigenvalues of the Dirac operator 17.4 Non-Abelian anomaly and chiral gauge theories 17.4.1 General axial current 17.5 Weak and electromagnetic interactions: Anomaly cancellation 17.5.1 Obstruction to gauge invariance 17.5.2 An application: Weak–electromagnetic interactions 17.6 Wess–Zumino consistency conditions 17.7 Lattice fermions: Ginsparg–Wilson relation 17.7.1 Lattice: New implementation of chiral symmetry 17.7.2 Eigenvalues and index of the Dirac operator in a gauge background 17.7.3 Chiral transformations on the lattice: Non-Abelian generalization 17.7.4 Explicit realization: Overlap fermions 17.8 Supersymmetric quantum mechanics and domain wall fermions 17.8.1 Supersymmetric quantum mechanics 17.8.2 Domain wall fermions: Continuum formulation 18 Periodic semi-classical vacuum, instantons and anomalies 18.1 The periodic cosine potential 18.1.1 The structure of the ground state 18.1.2 Path integral representation and topology 18.1.3 Instantons 18.2 Instantons, anomalies and θ-vacua: CPN−1 models 18.2.1 The CPN−1 models 18.2.2 The CPN−1 action 18.2.3 The structure of the semi-classical vacuum 18.2.4 Instantons and topology 18.2.5 CP1 and O(3) non-linear σ-models 18.3 Non-Abelian gauge theories: Instantons and anomalies 18.3.1 Instantons, chiral anomaly and topology 18.3.2 The topological charge: Quantization 18.4 The semi-classical vacuum and the strong CP violation 18.5 Fermions in an instanton background: The U(1) problem 18.5.1 Solutions to the strong CP problem 18.5.2 The solution of the U(1) problem 19 Field theory in a finite geometry: Finite size scaling 19.1 Periodic boundary conditions and the problem of the zero mode 19.1.1 Finite size and finite temperature quantum mechanics 19.1.2 The role of the zero mode: Effective integral 19.2 Cylindrical geometry: Two-dimensional field theory 19.2.1 Super-renormalizable perturbative field theory 19.2.2 Finite size with periodic boundary conditions 19.2.3 The effective theory of the zero mode 19.2.4 Leading order calculation 19.2.5 One-loop corrections 19.3 Effective (φ2)2 field theory at criticality in finite geometries 19.3.1 The (φ2)2 field theory for 2 < d ≤ 4 19.3.2 RG equations 19.3.3 RG in finite geometries: Finite size scaling 19.4 Momentum quantization in finite geometries 19.4.1 Periodic boundary conditions and the problem of the zero mode 19.5 The (φ2)2 field theory in a periodic hypercube 19.5.1 Moments: Leading order calculation 19.5.2 Moments: One-loop corrections at Tc 19.5.3 Moments: Dimensions d > 4 19.5.4 Universality at Tc for d > 4 19.5.5 Moments: Dimension d = 4 − ε 19.6 The (φ2)2 field theory: Cylindrical geometry 19.6.1 Finite size correlation length: Leading order calculation 19.6.2 Finite size correlation length: One-loop corrections 19.6.3 Finite size correlation length: Dimensions d > 4 19.6.4 Finite size correlation length: Dimensions d = 4 − ε 19.7 Continuous symmetries: Finite size effects at low temperature 20 The weakly interacting Bose gas at the critical temperature 20.1 Bose gas: Field integral formulation 20.1.1 Euclidean Bose gas action 20.1.2 Equation of state and two-point function 20.2 Independent bosons: Bose–Einstein condensation 20.3 The weakly interacting Bose gas and the Helium phase transition 20.3.1 Phase transition and dimensional reduction 20.4 RG and universality 20.4.1 Solution of the RG equations: The IR fixed point 20.4.2 RG equation: Another form of the solution and crossover scale 20.5 The shift of the critical temperature for weak interaction 20.5.1 The variation of the equation of state 20.5.2 The N-vector model: The large N expansion at order 1/N 20.5.3 The saddle point equations 20.5.4 The two-point function: 1/N correction 21 Quantum field theory at finite temperature 21.1 Finite temperature QFT: General considerations 21.1.1 Classical statistical field theory and RG 21.1.2 Mode expansion and dimensional reduction 21.2 Scalar field theory: Effective theory for the zero mode 21.2.1 Effective reduced action: Leading order 21.2.2 One-loop correction to the effective action 21.2.3 Reduced action at higher orders 21.2.4 Renormalization 21.3 The (φ2)21,d scalar QFT: Phase transitions 21.3.1 Phase transitions at zero temperature 21.3.2 Phase transitions at finite temperature 21.4 Temperature effects: The temperature-dependent mass 21.5 Phase structure at finite temperature at one loop 21.5.1 Thermodynamic potential density at one loop 21.5.2 Critical temperature 21.5.3 Two-point function: One-loop calculation in the symmetric phase 21.6 RG at finite temperature 21.6.1 Dimension d ≤ 3 21.7 Effective action: Perturbative calculation 21.7.1 Effective action at leading order 21.7.2 Effective action: One-loop correction 21.8 Effective action: φ-Expansion 21.8.1 The φ2 term 21.9 The (φ2)2 field theory at finite temperature in the large N limit 21.9.1 The large N limit 21.9.2 Zero temperature 21.9.3 Finite temperature 21.10 The non-linear σ-model at finite temperature for large N 21.10.1 The O(N) symmetric non-linear σ-model 21.10.2 The large N limit at zero temperature 21.10.3 The σ two-point function 21.10.4 The large N limit at finite temperature: The gap equations 21.10.5 The symmetric phase 21.10.6 Dimension d = 2 21.10.7 Dimension d ≥ 3 21.10.8 The spontaneously broken phase 21.11 The GN model at finite temperature for large N 21.11.1 The GN model 21.11.2 The GN model at zero temperature for N large: Gap equation and mass spectrum 21.11.3 Finite temperature: Gap or saddle point equation 21.11.4 Phase transition at finite temperature: The critical temperature 21.11.5 The σ two-point function 21.11.6 Dimension d = 1 21.12 Abelian gauge theories: The QED example 21.12.1 Massive vector field coupled to fermion matter 21.12.2 Finite temperature 21.12.3 From physical to temporal (Weyl) gauge: zero temperature 21.12.4 From physical to temporal (Weyl) gauge: Finite temperature 21.12.5 Dimensional reduction 21.12.6 The action density 21.12.7 Discussion A21 Appendix: One-loop contributions A21.1 Γ and ζ functions A21.2 The one-loop two-point contribution at T = 0 A21.3 The thermal corrections at one loop A21.3.1 The gap equation A21.3.2 The two-point function 22 From random walk to critical dynamics 22.1 Random walk with gradient driving force 22.1.1 The trajectory probability distribution 22.1.2 The purely dissipative Langevin equation 22.2 An elementary example: The linear driving force 22.2.1 The Brownian motion: ω = 0 22.2.2 Case ω 6= 0 22.2.3 Addition of a time-dependent linear potential: Jarzinsky’s relation 22.3 The Fokker–Planck formalism 22.3.1 The FP equation 22.3.2 Dissipative Langevin equation 22.3.3 Detailed balance 22.3.4 Gradient time-dependent force and Jarzinsky’s relation 22.4 Path integral representation 22.4.1 Dissipative Langevin equation 22.4.2 Detailed balance and path integral 22.4.3 Time-dependent force deriving from a potential 22.4.4 Time-dependent force and Jarzinsky’s relation 22.5 The dissipative Langevin equation: Supersymmetric formulation 22.5.1 Grassmann coordinates and algebraic properties 22.5.2 Superpaths and covariant derivatives 22.5.3 Supersymmetry 22.5.4 Supersymmetry and detailed balance 22.6 Critical dynamics: The Langevin equation in field theory 22.6.1 The associated FP equation 22.6.2 The linear Langevin equation 22.7 Time-dependent correlation functions and dynamic action 22.7.1 Dynamic action 22.7.2 The divergent determinant 22.8 The dissipative Langevin equation and supersymmetry 22.8.1 Supersymmetry 22.8.2 WT identities 22.9 Renormalization of the dissipative Langevin equation 22.10 Dissipative Langevin equation: RG equations in 4−ε dimensions 22.10.1 RG equations at and above Tc 22.10.2 The infrared fixed point 22.10.3 Correlation functions above Tc in the critical domain 23 Field theory: Perturbative expansion and summation methods 23.1 Divergent series in quantum field theory 23.1.1 A special class of divergent series 23.1.2 Borel summable series. Borel transformation 23.2 An example: The perturbative (φ2)2 field theory 23.2.1 The perturbative expansion: Large order behaviour 23.3 Renormalized perturbation theory: Callan–Symanzik equations 23.3.1 CS equations 23.3.2 RG functions in three dimensions in the CS formalism 23.4 Summation methods and critical exponents 23.4.1 Pad´e approximants 23.4.2 Methods based on Borel transformation 23.4.3 Borel transformation and conformal mapping 23.5 ODM summation method 23.5.1 The general method 23.5.2 Functions analytic in a cut-plane: Heuristic convergence analysis 23.5.3 Examples 23.6 Application: The simple integral d = 0 23.6.1 The optimal mapping 23.6.2 Numerical application 23.6.3 Alternative mapping 23.7 The quartic anharmonic oscillator: d = 1 23.8 φ4 field theory in d = 3 dimensions 24 Hyper-asymptotic expansions and instantons 24.1 Divergent series and Borel summability 24.2 Perturbative expansion and path integral 24.3 The quartic anharmonic oscillator: A Borel summable example 24.3.1 Cauchy representation and barrier penetration 24.3.2 Barrier penetration and instantons: The ground state N = 0 24.4 The double-well potential: Generalized Bohr–Sommerfeld quantization formulae 24.4.1 The quartic double-well potential: Perturbative expansion 24.4.2 Quantum tunnelling and energy splitting 24.4.3 The hyper-asymptotic expansion 24.4.4 Generalized Bohr–Sommerfeld quantization formula 24.4.5 Multi-instanton contributions at leading order 24.4.6 Large order behaviour of perturbative series 24.5 Instantons and multi-instantons 24.5.1 Partition function and symmetries 24.5.2 Potentials with symmetric degenerate minima 24.5.3 Multi-instantons 24.5.4 The general multi-instanton action 24.5.5 The multi-instanton contribution 24.5.6 The sum of leading order instanton contributions 24.6 Perturbative and exact WKB expansions 24.6.1 Riccati equation and complex Bohr–Sommerfeld quantization formula 24.6.2 Complex WKB expansion 24.7 Other analytic potentials: A few examples 24.7.1 Asymmetric wells 24.7.2 The periodic cosine potential 25 Renormalization group approach to matrix models 25.1 One-Hermitian matrix models and random surfaces: A summary 25.2 Continuum and double scaling limits 25.2.1 Continuum limit: The cubic example 25.2.2 The double scaling limit 25.2.3 Generalizations 25.3 The RG approach 25.3.1 The matrix RG flow 25.3.2 Linear perturbative approximation 25.3.3 Stability analysis Bibliography Index