دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: ژنتیک ویرایش: 3rd ed نویسندگان: Jeremy Dale, Malcolm von Schantz, Nick Plant سری: ISBN (شابک) : 9780470683866, 0470683856 ناشر: Wiley-Blackwell سال نشر: 2012 تعداد صفحات: 402 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 مگابایت
کلمات کلیدی مربوط به کتاب از ژن ها گرفته تا ژنوم ها: مفاهیم و کاربردهای فناوری DNA: رشته های زیستی، ژنتیک
در صورت تبدیل فایل کتاب From genes to genomes : concepts and applications of DNA technology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب از ژن ها گرفته تا ژنوم ها: مفاهیم و کاربردهای فناوری DNA نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
آخرین ویرایش این کتاب درسی بسیار موفق، تکنیک ها و مفاهیم کلیدی درگیر در شبیه سازی ژن ها و مطالعه بیان و تنوع آنها را معرفی می کند. ویژگی های نسخه جدید: افزایش پوشش فناوری های توالی یابی کل ژنوم و بهبود درمان بیوانفورماتیک. نمودارهای واضح و دو رنگ در سراسر. یک وب سایت اختصاصی شامل تمام ارقام. این کتاب که به دلیل تعادل فوقالعادهاش بین وضوح پوشش و سطح جزئیات اشاره میکند، مقدمهای عالی برای دنیای در حال حرکت سریع ژنتیک مولکولی ارائه میکند.
The latest edition of this highly successful textbook introduces the key techniques and concepts involved in cloning genes and in studying their expression and variation. The new edition features: Increased coverage of whole-genome sequencing technologies and enhanced treatment of bioinformatics. Clear, two-colour diagrams throughout. A dedicated website including all figures. Noted for its outstanding balance between clarity of coverage and level of detail, this book provides an excellent introduction to the fast moving world of molecular genetics.
Front Cover Title Page Copyright Page CONTENTS Preface 1 From Genes to Genomes 1.1 Introduction 1.2 Basic molecular biology 1.2.1 The DNA backbone 1.2.2 The base pairs 1.2.3 RNA structure 1.2.4 Nucleic acid synthesis 1.2.5 Coiling and supercoilin 1.3 What is a gene? 1.4 Information flow: gene expression 1.4.1 Transcription 1.4.2 Translation 1.5 Gene structure and organisation 1.5.1 Operons 1.5.2 Exons and introns 1.6 Refinements of the model 2 How to Clone a Gene 2.1 What is cloning? 2.2 Overview of the procedures 2.3 Extraction and purification of nucleic acids 2.3.1 Breaking up cells and tissues 2.3.2 Alkaline denaturation 2.3.3 Column purification 2.4 Detection and quantitation of nucleic acids 2.5 Gel electrophoresis 2.5.1 Analytical gel electrophoresis 2.5.2 Preparative gel electrophoresis 2.6 Restriction endonucleases 2.6.1 Specificity 2.6.2 Sticky and blunt ends 2.7 Ligation 2.7.1 Optimising ligation conditions 2.7.2 Preventing unwanted ligation: alkaline phosphatase and double digests 2.7.3 Other ways of joining DNA fragments 2.8 Modification of restriction fragment ends 2.8.1 Linkers and adaptors 2.8.2 Homopolymer tailing 2.9 Plasmid vectors 2.9.1 Plasmid replication 2.9.2 Cloning sites 2.9.3 Selectable markers 2.9.4 Insertional inactivation 2.9.5 Transformation 2.10 Vectors based on the lambda bacteriophage 2.10.1 Lambda biology 2.10.2 In vitro packaging 2.10.3 Insertion vectors 2.10.4 Replacement vectors 2.11 Cosmids 2.12 Supervectors: YACs and BACs 2.13 Summary 3 Genomic and cDNA Libraries 3.1 Genomic libraries 3.1.1 Partial digests 3.1.2 Choice of vectors 3.1.3 Construction and evaluation of a genomic library 3.2 Growing and storing libraries 3.3 cDNA libraries 3.3.1 Isolation of mRNA 3.3.2 cDNA synthesis 3.3.3 Bacterial cDNA 3.4 Screening libraries with gene probes 3.4.1 Hybridization 3.4.2 Labelling probes 3.4.3 Steps in a hybridization experiment 3.4.4 Screening procedure 3.4.5 Probe selection and generation 3.5 Screening expression libraries with antibodies 3.6 Characterization of plasmid clones 3.6.1 Southern blots 3.6.2 PCR and sequence analysis 4 Polymerase Chain Reaction (PCR) 4.1 The PCR reaction 4.2 PCR in practice 4.2.1 Optimisation of the PCR reaction 4.2.2 Primer design 4.2.3 Analysis of PCR products 4.2.4 Contamination 4.3 Cloning PCR products 4.4 Long-range PCR 4.5 Reverse-transcription PCR 4.6 Quantitative and real-time PCR 4.6.1 SYBR Green 4.6.2 TaqMan 4.6.3 Molecular beacons 4.7 Applications of PCR 4.7.1 Probes and other modified products 4.7.2 PCR cloning strategies 4.7.3 Analysis of recombinant clones and rare events 4.7.4 Diagnostic applications 5 Sequencing a Cloned Gene 5.1 DNA sequencing 5.1.1 Principles of DNA sequencing 5.1.2 Automated sequencing 5.1.3 Extending the sequence 5.1.4 Shotgun sequencing; contig assembly 5.2 Databank entries and annotation 5.3 Sequence analysis 5.3.1 Identification of coding region 5.3.2 Expression signals 5.4 Sequence comparisons 5.4.1 DNA sequences 5.4.2 Protein sequence comparisons 5.4.3 Sequence alignments: Clustal 5.5 Protein structure 5.5.1 Structure predictions 5.5.2 Protein motifs and domains 5.6 Confirming gene function 5.6.1 Allelic replacement and gene knockouts 5.6.2 Complementation 6 Analysis of Gene Expression 6.1 Analysing transcription 6.1.1 Northern blots 6.1.2 Reverse transcription-PCR 6.1.3 In situ hybridization 6.2 Methods for studying the promoter 6.2.1 Locating the promoter 6.2.2 Reporter genes 6.3 Regulatory elements and DNA-binding proteins 6.3.1 Yeast one-hybrid assays 6.3.2 DNase I footprinting 6.3.3 Gel retardation assays 6.3.4 Chromatin immunoprecipitation (ChIP) 6.4 Translational analysis 6.4.1 Western blots 6.4.2 Immunocytochemistry and immunohistochemistry 7 Products from Native and Manipulated Cloned Genes 7.1 Factors affecting expression of cloned genes 7.1.1 Transcription 7.1.2 Translation initiation 7.1.3 Codon usage 7.1.4 Nature of the protein product 7.2 Expression of cloned genes in bacteria 7.2.1 Transcriptional fusions 7.2.2 Stability: conditional expression 7.2.3 Expression of lethal genes 7.2.4 Translational fusions 7.3 Yeast systems 7.3.1 Cloning vectors for yeasts 7.3.2 Yeast expression systems 7.4 Expression in insect cells: baculovirus systems 7.5 Mammalian cells 7.5.1 Cloning vectors for mammalian cells 7.5.2 Expression in mammalian cells 7.6 Adding tags and signals 7.6.1 Tagged proteins 7.6.2 Secretion signals 7.7 In vitro mutagenesis 7.7.1 Site-directed mutagenesis 7.7.2 Synthetic genes 7.7.3 Assembly PCR 7.7.4 Synthetic genomes 7.7.5 Protein engineering 7.8 Vaccines 7.8.1 Subunit vaccines 7.8.2 DNA vaccines 8 Genomic Analysis 8.1 Overview of genome sequencing 8.1.1 Strategies 8.2 Next generation sequencing (NGS) 8.2.1 Pyrosequencing (454) 8.2.2 SOLiD sequencing (Applied Biosystems) 8.2.3 Bridge amplification sequencing (Solexa/Ilumina) 8.2.4 Other technologies 8.3 De novo sequence assembly 8.3.1 Repetitive elements and gaps 8.4 Analysis and annotation 8.4.1 Identification of ORFs 8.4.2 Identification of the function of genes and their products 8.4.3 Other features of nucleic acid sequences 8.5 Comparing genomes 8.5.1 BLAST 8.5.2 Synteny 8.6 Genome browsers 8.7 Relating genes and functions: genetic and physical maps 8.7.1 Linkage analysis 8.7.2 Ordered libraries and chromosome walking 8.8 Transposon mutagenesis and other screening techniques 8.8.1 Transposition in bacteria 8.8.2 Transposition in Drosophila 8.8.3 Transposition in other organisms 8.8.4 Signature-tagged mutagenesis 8.9 Gene knockouts, gene knockdowns and gene silencing 8.10 Metagenomics 8.11 Conclusion 9 Analysis of Genetic Variation 9.1 Single nucleotide polymorphisms 9.1.1 Direct sequencing 9.1.2 SNP arrays 9.2 Larger scale variations 9.2.1 Microarrays and indels 9.3 Other methods for studying variation 9.3.1 Genomic Southern blot analysis: restriction fragment length polymorphisms (RFLPs) 9.3.2 VNTR and microsatellites 9.3.3 Pulsed-field gel electrophoresis 9.4 Human genetic variation: relating phenotype to genotype 9.4.1 Linkage analysis 9.4.2 Genome-wide association studies (GWAS) 9.4.3 Database resources 9.4.4 Genetic diagnosis 9.5 Molecular phylogeny 9.5.1 Methods for constructing trees 10 Post-Genomic Analysis 10.1 Analysing transcription: transcriptomes 10.1.1 Differential screening 10.1.2 Other methods: transposons and reporters 10.2 Array-based methods 10.2.1 Expressed sequence tag (EST) arrays 10.2.2 PCR product arrays 10.2.3 Synthetic oligonucleotide arrays 10.2.4 Important factors in array hybridization 10.3 Transcriptome sequencing 10.4 Translational analysis: proteomics 10.4.1 Two-dimensional electrophoresis 10.4.2 Mass spectrometry 10.5 Post-translational analysis: protein interactions 10.5.1 Two-hybrid screening 10.5.2 Phage display libraries 10.6 Epigenetics 10.7 Integrative studies: systems biology 10.7.1 Metabolomic analysis 10.7.2 Pathway analysis and systems biology 11 Modifying Organisms: Transgenics 11.1 Transgenesis and cloning 11.1.1 Common species used for transgenesis 11.1.2 Control of transgene expression 11.2 Animal transgenesis 11.2.1 Basic methods 11.2.2 Direct injection 11.2.3 Retroviral vectors 11.2.4 Embryonic stem cell technology 11.2.5 Gene knockouts 11.2.6 Gene knock-down technology: RNA interference 11.2.7 Gene knock-in technology 11.3 Applications of transgenic animals 11.4 Disease prevention and treatment 11.4.1 Live vaccine production: modification of bacteria and viruses 11.4.2 Gene therapy 11.4.3 Viral vectors for gene therapy 11.5 Transgenic plants and their applications 11.5.1 Introducing foreign genes 11.5.2 Gene subtraction 11.5.3 Applications 11.6 Transgenics: a coda Glossary Bibliography INDEX