دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: معادلات دیفرانسیل ویرایش: 0 نویسندگان: Stefan G. Samko, Anatoly A. Kilbas, Oleg I. Marichev سری: ISBN (شابک) : 2881248640, 9782881248641 ناشر: CRC Press سال نشر: 1993 تعداد صفحات: 1013 زبان: English فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
در صورت تبدیل فایل کتاب Fractional Integrals and Derivatives: Theory and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب انتگرال های کسری و مشتقات: نظریه و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این تک نگاری به ارائه سیستماتیک و جامع نتایج کلاسیک و مدرن در تئوری انتگرال های کسری و کاربردهای آنها اختصاص دارد. جنبه های مختلف این نظریه مانند توابع یک و چند متغیر، موارد تناوبی و غیر تناوبی و تکنیک انتگرال های فرامنفردی مورد بررسی قرار می گیرد. همه انواع موجود تمایز یکپارچه کسری مورد بررسی و مقایسه قرار می گیرند. کاربردهای حساب کسری برای معادلات انتگرال مرتبه اول با هسته های لگاریتمی توان و توان، و با توابع ویژه در هسته ها و معادلات نوع اویلر-پواسون-داربوکس و معادلات دیفرانسیل مرتبه کسری مورد بحث قرار می گیرد. متن باید نه تنها برای فارغ التحصیلان و فارغ التحصیلان فیزیک و مهندسی ریاضی، بلکه برای متخصصان این رشته نیز مفید باشد.
This monograph is devoted to the systematic and comprehensive exposition of classical and modern results in the theory of fractional integrals and their applications. Various aspects of this theory, such as functions of one and several variables, periodical and non-periodical cases, and the technique of hypersingular integrals are studied. All existing types of fractional integro-differentiation are examined and compared. The applications of fractional calculus to first order integral equations with power and power logarithmic kernels, and with special functions in kernels and to Euler-Poisson-Darboux's type equations and differential equations of fractional order are discussed. The text should be of use not only to graduates and postgraduates of mathematical physics and engineering, but also to specialists in the field.
Foreword xv Preface to the English edition xvii Preface xix Introduction xxiii Notation of the main forms of fractional integrals and derivatives xxv Brief historical outline xxvii Chapter 1 - Fractional Integrals and Derivatives on an Interval 1 § 1. Preliminaries 1 1.1. The spaces $H^{\lambda}$ and $H^{\lambda}(\rho)$ 1 1.2. The spaces $L_{p}$ and $L_{p}(\rho)$ 7 1.3. Some special functions 14 1.4. Integral transforms 23 § 2. Riemann-Liouville Fractional Integrals and Derivatives 28 2.1. The Abel integral equation 29 2.2. On the solvability of the Abel equation in the space of integrable functions 30 2.3. Definition of fractional integrals and derivatives and their simple properties 33 2.4. Fractional integrals and derivatives of complex order 38 2.5. Fractional integrals of some elementary functions 40 2.6. Fractional integration and differentiation as reciprocal operations 43 2.7. Composition formulae. Connection with semigroups of operators 46 § 3. The Fractional Integrals of Hölder and Summable Functions 53 3.1. Mapping properties in the space $H^{\lambda}$ 53 3.2. Mapping properties in the space $H_{0}^{\lambda}(\rho)$ 57 3.3. Mapping properties in the space $L_{p}$ 66 3.4. Mapping properties in the space $L_{p}(\rho)$ 70 § 4. Bibliographical Remarks and Additional Information to Chapter 1 82 4.1. Historical notes 82 4.2. Survey of other results (relating to §§ 1--3) 84 Chapter 2 - Fractional Integrals and Derivatives on the Real Axis and Half- Axis 93 § 5. The Main Properties of Fractional Integrals and Derivatives 93 5.1. Definitions and elementary properties 93 5.2. Fractional integrals of Hölderian functions 98 5.3. Fractional integrals of summable functions 102 5.4. The Marchaud fractional derivative 109 5.5. The finite part of integrals due to Hadamard 112 5.6. Properties of finite differences and Marchaud fractional derivatives of order $\alpha>1$ 116 5.7. Connection with fractional power of operators 120 § 6. Representation of Function by Fractional Integrals of $L_{p}$-Functions 122 6.1. The space $I^{\alpha}(L_{p})$ 122 6.2. Inversion of fractional integrals of $L_{p}$-functions 123 6.3. Characterization of the space $I^{\alpha}(L_{p})$ 127 6.4. Sufficiency conditions for the representability of functions by fractional integrals. 131 6.5. On the integral modulus of continuity of $I^{\alpha}(L_{p})$-functions 136 § 7. Integral Transforms of Fractional Integrals and Derivatives 137 7.1. The Fourier transform 137 7.2. The Laplace transform 140 7.3. The Mellin transform 142 § 8. Fractional Integrals and Derivatives of Generalized Functions 145 8.1. Preliminary ideas 145 8.2. The case of the axis $R^{1}$ Lizorkin's space of test functions 146 8.3. Schwartz's approach 154 8.4. The case of the half-axis. The approach via the adjoint operator 155 8.5. McBride's spaces 157 8.6. The case of an interval 159 § 9. Bibliographical Remarks and Additional Information to Chapter 2 160 9.1. Historical notes 160 9.2. Survey of other results (relating to §§ 5--8) 163 9.3. Tables of fractional integrals and derivatives 172 Chapter 3 - Further Properties of Fractional Integrals and Derivatives 175 § 10. Compositions of Fractional Integrals and Derivatives with Weights 175 10.1. Compositions of two one-sided integrals with power weights 176 10.2. Compositions of two-sided integrals with power weights 189 10.3. Compositions of several integrals with power weights 191 10.4. Compositions with exponential and power-exponential weights 195 § 11. Connection between Fractional Integrals and the Singular Operator 199 11.1. The singular operator $S$ 199 11.2. The case of the whole line 202 11.3. The case of an interval and a half-axis 204 11.4. Some other composition relations 210 § 12. Fractional Integrals of the Potential Type 213 12.1. The real axis. The Riesz and Feller potentials 214 12.2. On the "truncation" of the Riesz potential to the half-axis 218 12.3. The case of the half-axis 221 12.4. The case of a finite interval 222 § 13. Functions Representable by Fractional Integrals on an Interval 224 13.1. The Marchaud fractional derivative on an interval 224 13.2. Characterization of fractional integrals of functions in $L_{p}$ 229 13.3. Continuation, restriction and "sewing" of fractional integrals 234 13.4. Characterization of fractional integrals of Hölderian functions 238 13.5. Fractional integration in the union of weighted Holder spaces 246 13.6. Fractional integrals and derivatives of functions with a prescribed continuity modulus 249 § 14. Miscellaneous Results for Fractional Integro-differentiation of Functions of a Real Variable 254 14.1. Lipschitz spaces $H_{p}^{\lambda}$ and $\tilde{H}_{p}^{\lambda}$ 254 14.2. Mapping properties of fractional integration in $H_{p}^{\lambda}$ 256 14.3. Fractional integrals and derivatives of functions which are given on the whole line and belong to $H_{p}^{\lambda}$ on every finite interval 261 14.4. Fractional derivatives of absolutely continuous functions 267 14.5. The Riesz mean value theorem and inequalities for fractional integrals and derivatives 270 14.6. Fractional integration and the summation of series and integrals 275 § 15. The Generalized Leibniz Rule 277 15.1. Fractional integro-differentiation of analytic functions on the real axis 277 15.2. The generalized Leibniz rule 280 § 16. Asymptotic Expansions of Fractional Integrals 285 16.1. Definitions and properties of asymptotic expansions 285 16.2. The case of a power asymptotic expansion 287 16.3. The case of a power-logarithmic asymptotic expansion 294 16.4. The case of a power-exponential asymptotic expansion 297 16.5. The asymptotic solution of Abel's equation 299 § 17. Bibliographical Remarks and Additional Information to Chapter 3 301 17.1. Historical notes 301 17.2. Survey of other results (relating to §§ 10--16) 305 Chapter 4 - Other Forms of Fractional Integrals and Derivatives 321 § 18. Direct Modifications and Generalizations of Riemann-Liouville Fractional Integrals 321 18.1. Erdelyi-Kober-type operators 322 18.2. Fractional integrals of a function by another function 325 18.3. Hadamard fractional integro-differentiation 329 18.4. One-dimensional modification of Bessel fractional integro-differentiation and the spaces $H^{s,p}=L_{p}^{s}$ 333 18.5. The Chen fractional integral 338 18.6. Dzherbashyan's generalized fractional integral 344 § 19. Weyl Fractional Integrals and Derivatives of Periodic Functions 347 19.1. Definitions. Connections with Fourier series 347 19.2. Elementary properties of Weyl fractional integrals 352 19.3. Other forms of fractional integration of periodic functions 354 19.4. The coincidence of Weyl and Marchaud fractional derivatives 356 19.5. The representability of periodic functions by the Weyl fractional integral 358 19.6. Weyl fractional integration and differentiation in the space of Hölderian functions 361 19.7. Weyl fractional integrals and derivatives of periodic functions in $H_{p}^{\lambda}$ 367 19.8. The Bernstein inequality for fractional integrals of trigono-metric polynomials 368 § 20. An Approach to Fractional Integro-differentiation via Fractional Differences (The Grünwald-Letnikov Approach) 371 20.1. Differences of a fractional order and their properties 371 20.2. Coincidence of the Grünwald-Letnikov derivative with the Marchaud derivative. The periodic case 376 20.3. Coincidence of the Grünwald-Letnikov derivative with the Marchaud derivative. The non-periodic case 382 20.4. Grünwald-Letnikov fractional differentiation on a finite interval 385 § 21. Operators with Power-Logarithmic Kernels 388 21.1. Mapping properties in the space $H^{\lambda}$ 389 21.2. Mapping properties in the space $H_{0}^{\lambda}(\rho)$ 396 21.3. Mapping properties in the space $L_{p}$ 401 21.4. Mapping properties in the space $L_{p}(\rho)$ 404 21.5. Asymptotic expansions 411 § 22. Fractional Integrals and Derivatives in the Complex Plane 414 22.1. Definitions and the main properties of fractional integro-differentiation in the complex plane Fractional integro-differentiation of analytic functions 420 22.3. Generalization of fractional integro-differentiation of analytic functions 426 § 23. Bibliographical Remarks and Additional Information to Chapter 4 431 23.1. Historical notes 431 23.2. Survey of other results (relating to §§ 18--22) 436 23.3. Answers to some questions put at the Conference on Fractional Calculus (New Haven, 1974) 455 Chapter 5 - Fractional Integro-differentiation of Functions of Many Variables 457 § 24. Partial and Mixed Integrals and Derivatives of Fractional Order 458 24.1. The multidimensional Abel integral equation 458 24.2. Partial and mixed fractional integrals and derivatives 459 24.3. The case of two variables. Tensor product of operators 463 24.4. Mapping properties of fractional integration operators in the spaces $L_{\tilde{p}}(R^{n})$ (with mixed norm) 464 24.5. Connection with a singular integral 466 24.6. Partial and mixed fractional derivatives in the Marchaud form 468 24.7. Characterization of fractional integrals of functions in $L_{\tilde{p}}(R^{2})$ 471 24.8. Integral transform of fractional integrals and derivatives 473 24.9. Lizorkin function space invariant relative to fractional integro-differentiation 475 24.10. Fractional derivatives and integrals of periodic functions of many variables 476 24.11. Grünwald-Letnikov fractional differentiation 479 24.12. Operators of the polypotential type 480 § 25. Riesz Fractional Integro-differentiation 483 25.1 Preliminaries 484 25.2. The Riesz potential and its Fourier transform. Invariant Lizorkin space 489 25.3. Mapping properties of the operator $I^{\alpha}$ in the spaces $L_{p}(R^{n})$ and $L_{p}(R^{n};\rho)$ 494 25.4. Riesz differentiation (hypersingular integrals) 498 25.5. Unilateral Riesz potentials 502 § 26. Hypersingular Integrals and the Space of Riesz Potentials 505 26.1. Investigation of the normalizing constants $d_{n,l}(\alpha)$ as functions of the parameter $\alpha$ 505 26.2. Convergence of the hypersingular integral for smooth functions and diminution of order $l$ to $l>2[\alpha/2]$ in the case of a non-centered difference 510 26.3. The hypersingular integral as an inverse of a Riesz potential 512 26.4. Hypersingular integrals with homogeneous characteristics 518 26.5. Hypersingular integral with a homogeneous characteristic as a convolution with the distribution 525 26.6. Representation of differential operators in partial derivatives by hypersingular integrals 527 26.7. The space $I^{\alpha}(L_{p})$ of Riesz potentials and its characterization in terms of hypersingular integrals. The space $L_{p,r}^\alpha(R^{n})$ 532 § 27. Bessel Fractional Integro-differentiation 538 27.1. The Bessel kernel and its properties 538 27.2. Connections with Poisson, Gauss-Weierstrass and metaharmonic continuation semigroups 541 27.3. The space of Bessel potentials 543 27.4. The realization of $(E-\Delta)^{\alpha/2}$, $\alpha>0$, in terms of hypersingular integrals 547 § 28. Other Forms of Multidimensional Fractional Integro-differentiation 554 28.1. Riesz potential with Lorentz distance (hyperbolic Riesz potentials) 555 28.2. Parabolic potentials 562 28.3. The realization of the fractional powers $\left(-\Delta_{x}+\frac{\partial}{\partial t}\right)^{\alpha/2}$ and ($\left(\operatorname{E}-\Delta_{x}+\frac{\partial}{\partial t}\right)^{\alpha/2}$, $\alpha>0$, in terms of a hypersingular integral 565 28.4. Pyramidal analogues of mixed fractional integrals and derivatives 538 § 29. Bibliographical Remarks and Additional Information to Chapter 5 580 29.1. Historical notes 580 29.2. Survey of other results (relating to §§ 24--28) 584 Chapter 6 - Applications to Integral Equations of the First Kind with Power and Power-Logarithmic Kernels 605 § 30. The Generalized Abel Integral Equation 606 30.1. The dominant singular integral equation 606 30.2. The generalized Abel equation on the whole axis 610 30.3. The generalized Abel equation on an interval 616 30.4. The case of constant coefficients 622 § 31. The Noether Nature of the Equation of the First Kind with Power-Type Kernels 629 31.1. Preliminaries on Noether operators 630 31.2. The equation on the axis 634 31.3. Equations on a finite interval 646 31.4. On the stability of solutions 657 § 32. Equations with Power-Logarithmic Kernels 659 32.1. Special Volterra functions and some of their properties 661 32.2. The solution of equations with integer non-negative powers of logarithms 664 32.3. The solution of equations with real powers of logarithms 667 § 33. The Noether Nature of Equations of the First Kind with Power-Logarithmic Kernels 672 33.1. Imbedding theorems for the ranges of the operators $I_{\alpha+}^{\alpha,\beta}$ and $I_{b-}^{\alpha,\beta}$ 673 33.2. Connection between the operators with power-logarithmic kernels and singular operator 674 33.3. The Noether nature of equation (33.1) 681 § 34. Bibliographical Remarks and Additional Information to Chapter 6 684 34.1. Historical notes 684 34.2. Survey of other results (relating to §§ 30--33) 687 Chapter 7 - Integral Equations of the First Kind with Special Functions as Kernels 695 § 35. Some Equations with Homogeneous Kernels Involving Gauss and Legendre Functions 696 35.1. Equations with the Gauss function 696 35.2. Equations with the Legendre function 699 § 36. Fractional Integrals and Derivatives as Integral Transforms 703 36.1. Definition of the $G$-transform. The spaces $\mathcal{M}_{c,\gamma}^{-1}(L)$ and $L_{2}^{(c,\gamma)}$ and their characterization 704 36.2. Existence, mapping properties and representations of the $G$-transform 709 36.3. Factorization of the $G$-transform 713 36.4. Inversion of the $G$-transform 716 36.5. The mapping properties, factorization and inversion of fractional integrals in the spaces $\mathcal{M}_{c,\gamma}^{-1}(L)$ and $I_{2}^{(c,\gamma)}$ 720 36.6. Other examples of factorization 722 36.7. Mapping properties of the $G$-transform on fractional integrals and derivatives 726 36.8. Index laws for fractional integrals and derivatives 727 § 37. Equations with Non-Homogeneous Kernels 730 37.1. Equations with difference kernels 731 37.2. Generalized operators of Hankel and Erdelyi-Kober transforms 737 37.3. Non-convolution operators with Bessel functions in kernels 741 37.4. Equation of compositional type 746 37.5. The $W$-transform and its inversion 752 37.6. Application of fractional integrals to the inversion of the $W$-transform 758 § 38. Applications of Fractional Integro-differentiation to the Investigation of Dual Integral Equations 761 38.1. Dual Equations 762 38.2. Triple equations 768 § 39. Bibliographical Remarks and Additional Information to Chapter 7 772 39.1. Historical notes 772 39.2. Survey of other results (relating to §§ 35--38) 775 Chapter 8 - Applications to Differential Equations 795 § 40. Integral Representations for Solution of Partial Differential Equations of the Second Order via Analytic Functions and Their Applications to Boundary Value Problems 795 40.1. Preliminaries 796 40.2. The representation of solutions of generalized Helmholtz two-axially symmetric equation 800 40.3. Boundary value problems for the generalized Helmholtz two-axially symmetric equation 809 § 41. Euler-Poisson-Darboux Equation 812 41.1. Representations for solutions of the Euler-Poisson-Darboux equation 813 41.2. Classical and generalized solutions of the Cauchy problem 819 41.3. The half-homogeneous Cauchy problem in multidimensional half-space 823 41.4. The weighted Dirichlet and Neumann problems in a half-plane 826 § 42. Ordinary Differential Equations of Fractional Order 829 42.1. The Cauchy-type problem for differential equations and systems of differential equations of fractional order of general form 830 42.2. The Cauchy-type problem for linear differential equation of fractional order 837 42.3. The Dirichlet-type problem for linear differential equation of fractional order 843 42.4. Solution of the linear differential equation of fractional order with constant coefficients in the space of generalized functions 846 42.5. The application of fractional differentiation to differential equations of integer order 849 § 43. Bibliographical Remarks and Additional Information to Chapter 8 856 43.1. Historical notes 856 43.2. Survey of other results (relating to §§ 40--42) 858 Bibliography 873 Author Index 953 Subject Index 965 Index of Symbols 973