دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Adel Ouannas, Iqbal M. Batiha, Viet-Thanh Pham سری: Topics In Systems Engineering, 3 ISBN (شابک) : 9811271208, 9789811271205 ناشر: World Scientific سال نشر: 2023 تعداد صفحات: 217 [218] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 110 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Fractional Discrete Chaos: Theories, Methods And Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آشوب گسسته کسری: نظریه ها، روش ها و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
در قرن نوزدهم، حساب کسری منشأ خود را در گسترش عملگرهای تمایز و ادغام از حالت عدد صحیح به حالت مرتبه کسری داشت. حساب کسری گسسته اخیراً به یک موضوع تحقیقاتی مهم تبدیل شده است که در کاربردهای مختلف علوم و مهندسی مفید است. اولین تعریف عملگر زمان/تفاوت گسسته مرتبه کسری در سال 1974 توسط دیاز و اوسلر ارائه شد، جایی که این عملگر با گسسته کردن عملگر زمان پیوسته مرتبه کسری استخراج شد. با موفقیت، چندین نوع عملگر اختلاف مرتبه کسری از طریق تعمیم بیشتر عملگرهای کلاسیک متعدد پیشنهاد و معرفی شدند، و چندین محقق را برانگیختند تا به طور گسترده در یک کلاس جدید از سیستمها، یعنی سیستمهای زمان گسسته غیرخطی مرتبه کسری (یا به سادگی، نقشه های مرتبه کسری) و رفتارهای آشفته آنها. این کشف آشوب در چنین نقشههایی منجر به روشهای کنترلی نوینی برای تثبیت مؤثر پویایی آشفته آنها شده است. اهداف این کتاب به شرح زیر است:
In the nineteenth-century, fractional calculus had its origin in extending differentiation and integration operators from the integer-order case to the fractional-order case. Discrete fractional calculus has recently become an important research topic, useful in various science and engineering applications. The first definition of the fractional-order discrete-time/difference operator was introduced in 1974 by Diaz and Osler, where such operator was derived by discretizing the fractional-order continuous-time operator. Successfully, several types of fractional-order difference operators have then been proposed and introduced through further generalizing numerous classical operators, motivating several researchers to publish extensively on a new class of systems, viz the nonlinear fractional-order discrete-time systems (or simply, the fractional-order maps), and their chaotic behaviors. This discovery of chaos in such maps, has led to novel control methods for effectively stabilizing their chaotic dynamics.The aims of this book are as follows:
Contents Preface Acknowledgment 1 Discrete Fractional Calculus 1.1. Introduction 1.2. Preliminaries 1.3. Fractional Difference Operators 1.3.1. Fractional Difference Sum Operator 1.3.1.1. Composing fractional sums and differences 1.3.1.2. Leibenitz formula 1.3.2. Riemann–Liouville Difference Operator 1.3.2.1. Composing with fractional sum and difference operators 1.3.2.2. Initial value problem 1.3.3. Caputo Fractional Difference Operator 1.3.3.1. Properties of fractional left-Caputo difference operator 1.3.3.2. Taylor difference formula 1.3.3.3. Initial value problem 1.4. Other Fractional Difference Operators 1.4.1. Grunwald–Letnikov Fractional Difference Operator 1.4.2. Fractional h-Difference Operators 1.5. Transform Methods 1.5.1. Z-Transform Method 1.5.2. Laplace Transform Method 1.6. Stability of Fractional Order Difference Systems 1.6.1. Stability of Fractional Order Linear Systems 1.6.2. Stability of Fractional Order Nonlinear Difference Systems 2 Chaotic Methods and Tests 2.1. Introduction 2.2. Discrete Chaos 2.2.1. Characterization of Chaotic Dynamical System 2.2.1.1. Sensitive initial condition 2.2.2. Strange Attractor 2.2.3. Chaotic Discrete Systems 2.3. Classical Tools to Detect Fractional Chaos 2.3.1. Bifurcation Diagrams 2.3.2. Lyapunov Exponents 2.3.2.1. Calculating Lyapunov exponents via Jacobi method 2.3.2.2. Calculating Lyapunov exponents of discrete fractional map via Jacobian matrix algorithm 2.3.2.3. Application in fractional Duffing map 2.4. 0–1 Test Method 2.4.1. Applications of the 0–1 Test on Fractional Order Maps 2.5. C0 Complexity Algorithm 2.5.1. Applying C0 Complexity for Analyzing the Complexity of Fractional Maps 2.6. Approximate Entropy 2.6.1. Applying ApEn for Analyzing the Complexity of Fractional Chaotic Duffing Map 3 Chaos in 2D Discrete Fractional Systems 3.1. Introduction 3.2. Fractional Quadratic Maps 3.2.1. Fractional-Order Hénon Map 3.2.1.1. Lyapunov exponents method 3.2.1.2. The 0–1 test method 3.2.2. Fractional Order Flow Map 3.2.3. Fractional Order Lorenz Map 3.3. Fractional Trigonometric Maps 3.3.1. Fractional Order Sine Map 3.3.1.1. Bifurcation diagrams, Lyapunov exponents and phase portraits 3.3.1.2. The 0–1 test method 3.3.2. Fractional Order Sine–Sine Map 3.3.2.1. Dynamics of the fractional order sine–sine map 3.4. Fractional Rational Maps 3.4.1. Fractional Order Rulkov Map 3.4.2. Fractional Order Chang et al. Map 3.5. Fractional Unified Maps 3.5.1. Fractional Order H´enon–Lozi Type Map 3.5.1.1. Bifurcations and largest Lyapunov exponents 3.5.1.2. The 0–1 test method 3.5.2. Fractional Order Zeraoulia–Sprott Map 4 Chaos in 3D Discrete Fractional Systems 4.1. Introduction 4.2. Fractional Generalized Hénon Map 4.3. Fractional Generalized Hénon Map with Lorenz-Like Attractors 4.3.1. Bifurcation and Chaotic Attractors 4.3.2. The 0–1 Test Method 4.4. Fractional Stefanski Map 4.5. Fractional Rössler System 4.6. Fractional Wang Map 4.7. Fractional Grassi–Miller Map 4.7.1. Dynamics Analysis on Varying α 4.7.2. Dynamics Analysis on Varying ν 4.7.3. The 0–1 Test 4.8. Fractional Cournot Game Model 4.8.1. The Fractional Order Cournot Game Model with Long Memory 4.8.2. Stability Analysis 4.8.3. Bifurcation Analysis and Numerical Simulations 4.8.4. The 0–1 Test Method 4.8.5. Approximate Entropy 5 Applications of Fractional Chaotic Maps 5.1. Control of Fractional Chaotic Maps 5.1.1. Nonlinear Control Laws 5.1.1.1. 2D fractional map 5.1.1.2. 3D fractional map 5.1.2. Linear Control Laws 5.1.2.1. 2D fractional discrete system 5.1.2.2. 3D fractional discrete system 5.2. Synchronization in Fractional Chaotic Maps 5.2.1. Generalized Synchronization (GS) 5.2.2. Inverse Generalized Synchronization (IGS) 5.2.3. Q–S Synchronization 5.2.4. The Coexistence of Different Synchronization Types 5.2.4.1. Coexistence of PS, FSHPS and GS 5.2.4.2. Coexistence of IFSHPS and IGS 5.3. Encryption Based on Fractional Discrete Chaotic Maps 5.3.1. Design of Pseudo-Random Bit Generator (PRBG) 5.3.2. Encryption of Electrophysiological Signal 5.4. Electronic Implementation of Fractional Chaotic Maps 5.4.1. The Fractional Map with the Grunwald–Letnikov Operator 5.4.2. Hardware Implementation Bibliography Index