ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Foundations in Biomaterials Engineering

دانلود کتاب مبانی در مهندسی بیومواد

Foundations in Biomaterials Engineering

مشخصات کتاب

Foundations in Biomaterials Engineering

ویرایش: 1 
نویسندگان: , ,   
سری:  
ISBN (شابک) : 0081010346, 9780081010341 
ناشر: Academic Press 
سال نشر: 2019 
تعداد صفحات: 561 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 22 مگابایت 

قیمت کتاب (تومان) : 31,000

در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Foundations in Biomaterials Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مبانی در مهندسی بیومواد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مبانی در مهندسی بیومواد



Foundations of Biomaterials Engineering مقدمه ای بر مهندسی مواد زیستی در اختیار خوانندگان قرار می دهد. این کتاب با تمرکز قوی بر روی ملزومات علم مواد، مکانیسم های فیزیولوژیکی دفاع و ترمیم، مهندسی بافت و مبانی بیوتکنولوژی را نیز بررسی می کند.

یک بخش مقدماتی مواد، خواص آنها، پردازش و روش های مهندسی را پوشش می دهد. بخش دوم که به بیومواد و زیست سازگاری اختصاص دارد، به مسائل مربوط به استفاده و کاربرد طبقات مختلف مواد در زمینه زیست پزشکی، به ویژه در بدن انسان، مکانیسم‌های نهفته در فرآیندهای فیزیولوژیکی دفاع و ترمیم، و پدیدارشناسی می‌پردازد. تعامل بین محیط زیستی و بیومواد.

بخش آخر کتاب به دو حوزه با اهمیت رو به رشد می پردازد: مهندسی بافت و بیوتکنولوژی. این کتاب منبع ارزشمندی برای محققان، دانشجویان و همه کسانی است که به دنبال مقدمه ای جامع و مختصر در زمینه مهندسی بیومواد هستند.

  • منبع یک مرحله ای برای اطلاعات در مورد ملزومات بیومواد و مهندسی ارائه می دهد
  • مفید به عنوان مقدمه یا مرجع پیشرفته در مورد پیشرفت های اخیر در زمینه بیومواد
  • توسعه یافته توسط نویسندگان باتجربه بین المللی، با ترکیب بازخورد و نظرات مشتریان موجود

توضیحاتی درمورد کتاب به خارجی

Foundations of Biomaterials Engineering provides readers with an introduction to biomaterials engineering. With a strong focus on the essentials of materials science, the book also examines the physiological mechanisms of defense and repair, tissue engineering and the basics of biotechnology.

An introductory section covers materials, their properties, processing and engineering methods. The second section, dedicated to Biomaterials and Biocompatibility, deals with issues related to the use and application of the various classes of materials in the biomedical field, particularly within the human body, the mechanisms underlying the physiological processes of defense and repair, and the phenomenology of the interaction between the biological environment and biomaterials.

The last part of the book addresses two areas of growing importance: Tissue Engineering and Biotechnology. This book is a valuable resource for researchers, students and all those looking for a comprehensive and concise introduction to biomaterials engineering.

  • Offers a one-stop source for information on the essentials of biomaterials and engineering
  • Useful as an introduction or advanced reference on recent advances in the biomaterials field
  • Developed by experienced international authors, incorporating feedback and input from existing customers


فهرست مطالب

Cover
FOUNDATIONS
OF BIOMATERIALS
ENGINEERING
Copyright
Preface
Acknowledgments
Section A: Introduction to Materials
1
Organization, Structure, and Properties of Materials
	The Main Classes of Materials
		Structure and Organization of Solids
			Solid State and Chemical Bonds
				Covalent Bond
				Ionic Bond
				Metallic Bond
				Secondary Bonds
			Solid State and Structural Forms
				Crystalline Materials
				Amorphous Materials
			Structure of the Different Classes of Materials
	Polymeric Materials
		Structure
		Polymerization Degree and Molecular Weight
			Calculating Average Molecular Weights
		Production of Polymers
			Chemical Isolation
			Synthesis of Polymers (Polymerization)
				Chain-Growth Polymerization
				Initiation
				Propagation
				Termination
				Step-Growth Polymerization
		Copolymerization
		Hydrogels
			Classification of Hydrogels
			Synthesis of Hydrogels
		Physical States of Polymers
			Intermolecular Bonding Forces
			Configuration and Conformation in Polymers
			Amorphous and Crystalline State in Polymers
				Example
				Crystallization Process of Polymers
		Thermal Transitions in Polymers: Tm and Tg
		Other Properties of Polymeric Materials
	Metallic Materials
		Structure
			Body-Centered Cubic (BCC) Unit Cell
			Face-Centered Cubic (FCC) Unit Cell
			Hexagonal Close-Packed (HCP) Unit Cell
			Polymorphism
		Defects of the Crystalline Structure
			Point Defects
			Line Defects (Dislocations)
			Planar Defects
		Typical Properties of Metallic Materials
		Metallic Alloys
			Formation of Metal Alloys
				Substitutional Solid Solution
				Interstitial Solid Solution
				Intermediate Phases
			Phase Diagrams
				Gibb's Phase Rule
				Lever Rule
				Binary Alloy Systems: Complete Miscibility
				Eutectic Alloy Systems: Partial Solid Miscibility
				Example: Fe-C Phase Diagram
				Ternary Phase Diagrams
		Thermal Treatments
			Hardening
			Tempering
			Annealing
			Normalizing
	Ceramic Materials
		Structure
		Typical Properties
		Traditional Ceramics and Advanced Ceramics
			Classification Based on Form
			Classification Based on Composition
			Classification Based on Applications
		Carbon and Its Allotropes
			Graphite
			Turbostratic Carbon
			Glassy Carbon
	Composite Materials
		Properties of Composite Materials
		Classification
			Particle-Reinforced Composite
			Fiber-Reinforced Composite
		The Role of the Components
			Matrix
			Reinforcement
			Fibers
			Particles
		Design of Composite Materials
	Natural Polymers
		Proteins
			Building Blocks
		Structure and Function of Proteins
		Classification of Proteins
		Polysaccharides
			Building Blocks
			Classification of Polysaccharides
		Nucleic Acids
			Building Blocks
			Structure and Function of Nucleic Acids
	Annex 1. Chirality
	References
	Further Reading
2
Mechanical Properties of Materials
	Introduction
	The Mechanical Behavior of Materials
		Stress and Strain
		Elasticity
			Elasticity Modulus
			Poisson's Ratio
			Enthalpic and Entropic Elasticity
		Viscoelasticity
		Materials Behaviour in Tensile Test
			Metals
			Polymers
				Elastic Modulus
				Tensile Behavior as a Function of Temperature
				Tensile Behavior as a Function of Direction and Rate of Deformation
				Tensile Behavior of Elastomers
					Ceramics
					Comparison Between the Tensile Behavior of the Different Classes of Materials
		True Stress and Strain Versus Engineering (Nominal) Stress and Strain
		Hysteresis
		Toughness and Resilience
		Brittle Fracture and Ductile Fracture
			Metals and Ceramics
			Polymers
		Deformation Mechanisms of Ceramic Materials
		Impact Test
		Hardness
		Fatigue
			Fatigue in Polymeric Materials
			Factors Influencing Fatigue Resistance
		Time-Depending Properties
			Creep and Strain Recovery
			Creep in Metallic Materials
			Stress Relaxation
	Further Reading
3
Manufacturing Technologies
	Production and Processing of Materials
		Involved Sectors
		Classification of Material Processing
	Polymeric Materials (Plastics)
		Traditional Technologies
			Compression Molding and Transfer Molding
			Casting
			Extrusion
			Injection Molding
			Blow Molding
			Thermoforming
			Calendering or Rolling
			Rotational Molding
			Machining With Machine Tools
		Foams, Fibers, Filament Winding
			Foams and Foamed Plastics
				Expanded Polystyrene
				Polyurethane Foams
			Technology of Fibers
				Spinning Technologies
			Filament Winding
		Forming From Solution
			Solvent Casting and Solution Coating
		Advanced Technologies
			Electrospinning
				Electrospinning Set-Up
	Metallic Materials
		Casting and Powder Metallurgy
			Sand Casting
			Shell Mold Casting
			Die Casting
			Lost Wax Casting
		Powder Metallurgy
		Hot and Cold Plastic Deformation
			Rolling
			Forging
			Drawing
			Extrusion
		Machining
			Lapping
			Sandblasting
			Electroerosion (Electrodischarge, EDM)
			Laser Cutting
			Water-Jet Cutting
			Plasma-Jet Cutting
		Junction Operations
		Surface Finishing Operations
			Plasma Spray
			Physical Vapor Deposition
			Chemical Vapor Deposition
			Ion Implantation
		Nondestructive Tests
		Manufacturing Steps of a Metallic Prosthetic Implant
	Ceramic Materials (Advanced)
		Ceramic Powders
			Production by Solid-State Reaction
			Production by Thermal Decomposition
			Production of Powders in Vapor Phase
			Methods in Solution
		Forming
			Forming by Pressing
			Dry Uniaxial Pressing
			Cold Isostatic Pressing
			Hot Uniaxial Pressing
			Hot Isostatic Pressing
			Wet Pressing
			Forming of Plastic Material
			Forming by Casting and Deposition
			Green
		Sintering
		Example of Fabrication of a Medical Device: Production of a Femoral Head in Alumina
	Manufacturing of Carbon and Graphite Materials
		Pyrolytic Graphite and Isotropic Carbon
		Isotropic Carbons Deposited in the Vapor Phase
		Carbon Fibers
	Manufacturing of Composite Materials
		Open Mold Processing
			Process by Hand Lay-Up
			Spray Lay-Up Application Process
			Filament Winding Process
		Closed Mold Processing
			Resin Transfer Molding process
			Reaction Injection Molding Process
			Vacuum-Assisted Resin Transfer Molding Process
			Compression Molding and Injection Molding
			Sheet-Molding Compound Process
			Pultrusion
	Advanced Technologies
		The AM Process
			General AM Process Steps
			Classification of AM Techniques
				Powder Bed Fusion
				Binder Jetting
				Materials Jetting
		Additive Manufacturing for Metals
			AM Process
				Laser Beam Melting (or Selective Laser Melting, SLM)
				Electron Beam Melting
				3D Printing
				Direct Energy Deposition
		Additive Manufacturing for Polymeric Materials
			Stereolithography
			Selective Laser Sintering
			Extrusion-Based Systems
				Fused Deposition Modeling
			Powder and Binder-Based 3D Printing
				Laminated Object Manufacturing
	References
	Further Reading
Section B: Biomaterials and Biocompatibility
4
Biomaterials and Applications
	Biomaterials and Biocompatibility
		Biomaterial
		Biocompatibility
	Polymeric Biomaterials
		Vinyl Polymers
			Polyethylene
			Polypropylene
			Polyvinylchloride
			Polystyrene
			Polytetrafluoroethylene
			Polyacrylonitrile
			Polyvinylalcohol
		Acrylic Resins
			Polyacrylates
			Polymethacrylates
			Polymethylmethacrylate
				Application Example of PMMA: Bone (Acrylic) Cement
			Poly-Hydroxyethyl-Methacrylate
			Acrylic Hydrogels as Biomaterials
		Polyesters
			Polyethylene Terephthalate
				PET Fibers
				Dacron
			Biodegradable (or Bioabsorbable) Polyesters
			Polycaprolactone
		Polyamides
		Polyimides
		Polyurethanes
			Typology
			Phase Separation
			Mechanical Properties
			TPU as Biomaterials
			Biodegradation Phenomena
		Silicones (Polysiloxanes)
			Silicone Elastomers
			Polydimethylsiloxane
			Silicone-Polyurethane Copolymers
		Polycarbonate
		Acetals Resins
		Polysulfones
		Polyaryl-Ether-Ketones
	Natural Polymers as Biomaterials
		Proteins
			Collagen (see Chapter 1 - Proteins, Fig. 1.64)
			Silk
			Elastin (see Chapter 1 - Proteins, Fig. 1.66)
			Keratin (see Chapter 1 - Proteins)
		Polysaccharides
			Cellulose (see Chapter 1 - Classification of Polysaccharides, Fig. 1.76)
			Starch (see Chapter 1 - Classification of Polysaccharides, Fig. 1.77)
			Chitin and Chitosan (see Chapter 1 - Classification of Polysaccharides, Fig. 1.78)
			Alginate (see Chapter 1 - Classification of Polysaccharides, Fig. 1.79)
			Hyaluronic Acid (see Chapter 1 - Classification of Polysaccharides, Fig. 1.80)
		Nucleic Acids (see Chapter 1 - Nucleic Acids, Fig. 1.85)
	Metallic Biomaterials
		Stainless Steels
			Phase Diagram
			Stainless Steel Classification
			Schaeffler Diagram
			Martensitic Stainless Steel
			Ferritic Stainless Steel
			Austenitic Stainless Steel
			Duplex Stainless Steel
			Other Stainless Steel Alloys Under Evaluation for Biomedical Devices
		Cobalt Alloys
			Cast Cobalt-Chromium Alloys
			Wrought Cobalt-Chromium Alloys
		Titanium and Titanium Alloys
		Advanced Alloys
			Ni-Ti Alloy
			Tantalum
			Biodegradable Alloys
		Possible Choice of Metal for Orthopedic Applications
			Fatigue Behavior
			Stiffness and Elastic Modulus
	Ceramic Biomaterials
		Nearly Inert Bioceramics
			Alumina (Al2O3)
			Zirconia (ZrO2)
			Carbon
		Surface Active Bioceramics and Reabsorbable Bioceramics
			Calcium Phosphate-Based Bioceramics
			Bioactive Glasses
			Applications
	Composite Biomaterials
		Overview
		Composites in Dentistry
			Restorative Dentistry
			Dentures, Bridges, and Dental Implants
		Composite Materials for Orthopedic Applications
			Bone Grafts
			Fracture Fixation Devices
			Joint Prostheses
			Cardiovascular Applications
			Tendons and Ligament Prostheses
	References
	Further Reading
5
Sterilization and Degradation
	Sterilization
		High Temperature Sterilization Methods
			Sterilization by Heat
			Dry Heat
			Moist Heat (Autoclave)
		Ethylene Oxide
		Radiation
			UV Radiation
			Ionizing Radiation
				Gamma Rays
				Electron Beam Radiation
				X-Ray Radiation
		Low Temperature Plasma
		Ozone
		Other Sterilization Methods
			Filter Sterilization
		Procedures of Disinfection
			Determination of the Microbiological Efficacy of Disinfectants
		Control of The Sterilization Efficacy
			Sterility Assurance Level
	Degradation
		Polymeric Materials (Plastics)
			Environmental Aging
			Oxidation
			Photoinduced Degradation
			Pyrolysis and High Temperature Degradation Mechanism
			Enzymatic and Bacterial Attack
			Chemical Attack
			Mechanical Degradation
			Effects of Sterilization
			Effect of High-Energy Radiations
			Degradation in the Physiological Environment
			Environmental Stress Cracking
			Bulk and Surface Erosion in Bioabsorbable Polymers
			Mineralization and Calcification
		Metallic Materials
			Corrosion Mechanism
				Passivity
			Types of Corrosion
				Uniform Attack
				Crevice Corrosion
				Pitting Corrosion
				Fretting Corrosion
				Galvanic Corrosion
				Intergranular Corrosion
			Corrosion in Biomedical Implants
		Ceramic Materials
	Wear Phenomena
		Types of Wear
			Adhesive Wear
			Abrasive Wear
			Fatigue Wear
			Corrosion Wear
		Measure of Wear Rate
		Wear in Biomedical Applications
	References
	Further Reading
6
Interactions Between Biomaterials and the Physiological Environment
	Physiological Structures and Mechanisms
		The Eukaryotic Animal Cell
		Tissue Types
			Connective Tissue Cells
			Extracellular Matrix
	Defense and Repair Mechanisms
		The Hemostatic System
		The Inflammatory Reaction
		The Immune System
			The Innate Immune System
			The Adaptive Immune System
		The Complement System
	Interactions Biomaterial/Human Body (Biocompatibility)
		Events Following Implantation
		Surface Phenomena After Biomaterial Implantation
		Response to Wear Debris
		Release of Toxic Products From the Biomaterial
		Bacterial Adhesion to Biomaterials and Strategies to Evade It
		Calcification
	References
	Further Reading
7
Techniques of Analysis
	Introduction
	Biomaterial Characterization
		Thermal Analyses
			Thermogravimetric Analysis, TGA
			Differential Thermal Analysis, DTA
			Differential Scanning Calorimetry, DSC
			Thermomechanical Analysis, TMA, and Dynamic TMA, DTMA
		Spectroscopic Analyses
			UV-Vis Spectroscopy
			Infrared (IR) spectroscopy
				Modes of Vibration
				Examples
			IR Spectrophotometer
			Attenuated Total Reflection
			Nuclear Magnetic Resonance spectroscopy
			1H NMR
		Chromatographic Techniques
			High Performance Liquid Chromatography
			Gel-Permeation Chromatography
		X-Ray Techniques for Crystallinity Analysis
		Microscopy Techniques
			Optical (Light) Microscopy
			Stereo Microscopy
			Fluorescence Microscopy
			Electron Microscopy
				Transmission Electron Microscopy
				Scanning Electron Microscopy
				Environmental SEM
			Scanning Probe Microscopy
				Scanning Tunneling Microscopy
				Atomic Force Microscopy
		Surface Analysis Techniques
			Contact Angle for Wettability
			Profilometry
			Spectroscopic Techniques for Surface Analysis
			Electron Spectroscopies
				X-ray Photoelectron Spectroscopy (XPS) or ESCA (Electron Spectroscopy for Chemical Analysis)
				AES (Auger Electron Spectroscopy)
			Ion Spectroscopies
				Secondary Ion Mass Spectroscopy
	Diagnostic Techniques
		X-Ray Investigation
			X-Rays
			Use in Medicine
			X-Ray Radiography
			Mammography
			Angiography
			Fluoroscopy
			Computed Tomography, CT
			X-Rays for Treating Disease
		Magnetic Resonance Imaging
			How MRI Works
			When Using MRI
			Contrast Agent
			CT Versus MRI
		Ultrasound Imaging
	Biocompatibility and Cytocompatibility Analyses
		Cytotoxicity and Cytocompatibility Testing
		Hemocompatibility Testing
		Irritation Testing (Including Intracutaneous Reactivity)
		Acute Systemic Toxicity Testing
		Subacute and Subchronic Toxicity Testing
		Implantation Testing
		Genotoxicity, Carcinogenicity, and Reproductive Toxicity Testing
	References
	Further Reading
8
Advanced Applications
	Tissue Engineering
		Introduction
		Necessary Steps for Tissue Regeneration by Use of Scaffolds
		The Scaffold and Materials
			The Materials for the Preparation of the Scaffolds
				Degradation Mechanisms
				Synthetic Biodegradable Polymers
		Methods for Scaffold Fabrication
			Nondesigned Manufacturing Techniques
				Fiber Bonding
				Solvent Casting/Particulate Leaching
				Freeze Drying
				Phase Separation
				Gas Foaming
				Electrospinning
			Designed Manufacturing Techniques
				3D Bioprinting
				Laser-Induced Forward Transfer
				Inkjet System
				Robotic Dispensing
				Soft Lithography
		The Cell Types
			Cell Lines
			Primary Cells and Tissue Cultures
			Stem Cells
			Induced Pluripotent Stem Cells
			Endothelial Cells and Neovascularization
		Dynamic Cell Culture and Bioreactors
	Fundamentals of Biotechnology
		Nucleic Acids: From Structure to Function
		Genetic Engineering
			Creating Genetically Modified Organisms
			Organism Cloning
			Gene Therapy
		Polymerase Chain Reaction
	References
	Further Reading
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
Back Cover




نظرات کاربران