دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Maria-Cristina Tanzi, Silvia Farè, Gabriele Candiani سری: ISBN (شابک) : 0081010346, 9780081010341 ناشر: Academic Press سال نشر: 2019 تعداد صفحات: 561 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 22 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Foundations in Biomaterials Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مبانی در مهندسی بیومواد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Foundations of Biomaterials Engineering مقدمه ای بر مهندسی مواد زیستی در اختیار خوانندگان قرار می دهد. این کتاب با تمرکز قوی بر روی ملزومات علم مواد، مکانیسم های فیزیولوژیکی دفاع و ترمیم، مهندسی بافت و مبانی بیوتکنولوژی را نیز بررسی می کند.
یک بخش مقدماتی مواد، خواص آنها، پردازش و روش های مهندسی را پوشش می دهد. بخش دوم که به بیومواد و زیست سازگاری اختصاص دارد، به مسائل مربوط به استفاده و کاربرد طبقات مختلف مواد در زمینه زیست پزشکی، به ویژه در بدن انسان، مکانیسمهای نهفته در فرآیندهای فیزیولوژیکی دفاع و ترمیم، و پدیدارشناسی میپردازد. تعامل بین محیط زیستی و بیومواد.
بخش آخر کتاب به دو حوزه با اهمیت رو به رشد می پردازد: مهندسی بافت و بیوتکنولوژی. این کتاب منبع ارزشمندی برای محققان، دانشجویان و همه کسانی است که به دنبال مقدمه ای جامع و مختصر در زمینه مهندسی بیومواد هستند.
Foundations of Biomaterials Engineering provides readers with an introduction to biomaterials engineering. With a strong focus on the essentials of materials science, the book also examines the physiological mechanisms of defense and repair, tissue engineering and the basics of biotechnology.
An introductory section covers materials, their properties, processing and engineering methods. The second section, dedicated to Biomaterials and Biocompatibility, deals with issues related to the use and application of the various classes of materials in the biomedical field, particularly within the human body, the mechanisms underlying the physiological processes of defense and repair, and the phenomenology of the interaction between the biological environment and biomaterials.
The last part of the book addresses two areas of growing importance: Tissue Engineering and Biotechnology. This book is a valuable resource for researchers, students and all those looking for a comprehensive and concise introduction to biomaterials engineering.
Cover FOUNDATIONS OF BIOMATERIALS ENGINEERING Copyright Preface Acknowledgments Section A: Introduction to Materials 1 Organization, Structure, and Properties of Materials The Main Classes of Materials Structure and Organization of Solids Solid State and Chemical Bonds Covalent Bond Ionic Bond Metallic Bond Secondary Bonds Solid State and Structural Forms Crystalline Materials Amorphous Materials Structure of the Different Classes of Materials Polymeric Materials Structure Polymerization Degree and Molecular Weight Calculating Average Molecular Weights Production of Polymers Chemical Isolation Synthesis of Polymers (Polymerization) Chain-Growth Polymerization Initiation Propagation Termination Step-Growth Polymerization Copolymerization Hydrogels Classification of Hydrogels Synthesis of Hydrogels Physical States of Polymers Intermolecular Bonding Forces Configuration and Conformation in Polymers Amorphous and Crystalline State in Polymers Example Crystallization Process of Polymers Thermal Transitions in Polymers: Tm and Tg Other Properties of Polymeric Materials Metallic Materials Structure Body-Centered Cubic (BCC) Unit Cell Face-Centered Cubic (FCC) Unit Cell Hexagonal Close-Packed (HCP) Unit Cell Polymorphism Defects of the Crystalline Structure Point Defects Line Defects (Dislocations) Planar Defects Typical Properties of Metallic Materials Metallic Alloys Formation of Metal Alloys Substitutional Solid Solution Interstitial Solid Solution Intermediate Phases Phase Diagrams Gibb's Phase Rule Lever Rule Binary Alloy Systems: Complete Miscibility Eutectic Alloy Systems: Partial Solid Miscibility Example: Fe-C Phase Diagram Ternary Phase Diagrams Thermal Treatments Hardening Tempering Annealing Normalizing Ceramic Materials Structure Typical Properties Traditional Ceramics and Advanced Ceramics Classification Based on Form Classification Based on Composition Classification Based on Applications Carbon and Its Allotropes Graphite Turbostratic Carbon Glassy Carbon Composite Materials Properties of Composite Materials Classification Particle-Reinforced Composite Fiber-Reinforced Composite The Role of the Components Matrix Reinforcement Fibers Particles Design of Composite Materials Natural Polymers Proteins Building Blocks Structure and Function of Proteins Classification of Proteins Polysaccharides Building Blocks Classification of Polysaccharides Nucleic Acids Building Blocks Structure and Function of Nucleic Acids Annex 1. Chirality References Further Reading 2 Mechanical Properties of Materials Introduction The Mechanical Behavior of Materials Stress and Strain Elasticity Elasticity Modulus Poisson's Ratio Enthalpic and Entropic Elasticity Viscoelasticity Materials Behaviour in Tensile Test Metals Polymers Elastic Modulus Tensile Behavior as a Function of Temperature Tensile Behavior as a Function of Direction and Rate of Deformation Tensile Behavior of Elastomers Ceramics Comparison Between the Tensile Behavior of the Different Classes of Materials True Stress and Strain Versus Engineering (Nominal) Stress and Strain Hysteresis Toughness and Resilience Brittle Fracture and Ductile Fracture Metals and Ceramics Polymers Deformation Mechanisms of Ceramic Materials Impact Test Hardness Fatigue Fatigue in Polymeric Materials Factors Influencing Fatigue Resistance Time-Depending Properties Creep and Strain Recovery Creep in Metallic Materials Stress Relaxation Further Reading 3 Manufacturing Technologies Production and Processing of Materials Involved Sectors Classification of Material Processing Polymeric Materials (Plastics) Traditional Technologies Compression Molding and Transfer Molding Casting Extrusion Injection Molding Blow Molding Thermoforming Calendering or Rolling Rotational Molding Machining With Machine Tools Foams, Fibers, Filament Winding Foams and Foamed Plastics Expanded Polystyrene Polyurethane Foams Technology of Fibers Spinning Technologies Filament Winding Forming From Solution Solvent Casting and Solution Coating Advanced Technologies Electrospinning Electrospinning Set-Up Metallic Materials Casting and Powder Metallurgy Sand Casting Shell Mold Casting Die Casting Lost Wax Casting Powder Metallurgy Hot and Cold Plastic Deformation Rolling Forging Drawing Extrusion Machining Lapping Sandblasting Electroerosion (Electrodischarge, EDM) Laser Cutting Water-Jet Cutting Plasma-Jet Cutting Junction Operations Surface Finishing Operations Plasma Spray Physical Vapor Deposition Chemical Vapor Deposition Ion Implantation Nondestructive Tests Manufacturing Steps of a Metallic Prosthetic Implant Ceramic Materials (Advanced) Ceramic Powders Production by Solid-State Reaction Production by Thermal Decomposition Production of Powders in Vapor Phase Methods in Solution Forming Forming by Pressing Dry Uniaxial Pressing Cold Isostatic Pressing Hot Uniaxial Pressing Hot Isostatic Pressing Wet Pressing Forming of Plastic Material Forming by Casting and Deposition Green Sintering Example of Fabrication of a Medical Device: Production of a Femoral Head in Alumina Manufacturing of Carbon and Graphite Materials Pyrolytic Graphite and Isotropic Carbon Isotropic Carbons Deposited in the Vapor Phase Carbon Fibers Manufacturing of Composite Materials Open Mold Processing Process by Hand Lay-Up Spray Lay-Up Application Process Filament Winding Process Closed Mold Processing Resin Transfer Molding process Reaction Injection Molding Process Vacuum-Assisted Resin Transfer Molding Process Compression Molding and Injection Molding Sheet-Molding Compound Process Pultrusion Advanced Technologies The AM Process General AM Process Steps Classification of AM Techniques Powder Bed Fusion Binder Jetting Materials Jetting Additive Manufacturing for Metals AM Process Laser Beam Melting (or Selective Laser Melting, SLM) Electron Beam Melting 3D Printing Direct Energy Deposition Additive Manufacturing for Polymeric Materials Stereolithography Selective Laser Sintering Extrusion-Based Systems Fused Deposition Modeling Powder and Binder-Based 3D Printing Laminated Object Manufacturing References Further Reading Section B: Biomaterials and Biocompatibility 4 Biomaterials and Applications Biomaterials and Biocompatibility Biomaterial Biocompatibility Polymeric Biomaterials Vinyl Polymers Polyethylene Polypropylene Polyvinylchloride Polystyrene Polytetrafluoroethylene Polyacrylonitrile Polyvinylalcohol Acrylic Resins Polyacrylates Polymethacrylates Polymethylmethacrylate Application Example of PMMA: Bone (Acrylic) Cement Poly-Hydroxyethyl-Methacrylate Acrylic Hydrogels as Biomaterials Polyesters Polyethylene Terephthalate PET Fibers Dacron Biodegradable (or Bioabsorbable) Polyesters Polycaprolactone Polyamides Polyimides Polyurethanes Typology Phase Separation Mechanical Properties TPU as Biomaterials Biodegradation Phenomena Silicones (Polysiloxanes) Silicone Elastomers Polydimethylsiloxane Silicone-Polyurethane Copolymers Polycarbonate Acetals Resins Polysulfones Polyaryl-Ether-Ketones Natural Polymers as Biomaterials Proteins Collagen (see Chapter 1 - Proteins, Fig. 1.64) Silk Elastin (see Chapter 1 - Proteins, Fig. 1.66) Keratin (see Chapter 1 - Proteins) Polysaccharides Cellulose (see Chapter 1 - Classification of Polysaccharides, Fig. 1.76) Starch (see Chapter 1 - Classification of Polysaccharides, Fig. 1.77) Chitin and Chitosan (see Chapter 1 - Classification of Polysaccharides, Fig. 1.78) Alginate (see Chapter 1 - Classification of Polysaccharides, Fig. 1.79) Hyaluronic Acid (see Chapter 1 - Classification of Polysaccharides, Fig. 1.80) Nucleic Acids (see Chapter 1 - Nucleic Acids, Fig. 1.85) Metallic Biomaterials Stainless Steels Phase Diagram Stainless Steel Classification Schaeffler Diagram Martensitic Stainless Steel Ferritic Stainless Steel Austenitic Stainless Steel Duplex Stainless Steel Other Stainless Steel Alloys Under Evaluation for Biomedical Devices Cobalt Alloys Cast Cobalt-Chromium Alloys Wrought Cobalt-Chromium Alloys Titanium and Titanium Alloys Advanced Alloys Ni-Ti Alloy Tantalum Biodegradable Alloys Possible Choice of Metal for Orthopedic Applications Fatigue Behavior Stiffness and Elastic Modulus Ceramic Biomaterials Nearly Inert Bioceramics Alumina (Al2O3) Zirconia (ZrO2) Carbon Surface Active Bioceramics and Reabsorbable Bioceramics Calcium Phosphate-Based Bioceramics Bioactive Glasses Applications Composite Biomaterials Overview Composites in Dentistry Restorative Dentistry Dentures, Bridges, and Dental Implants Composite Materials for Orthopedic Applications Bone Grafts Fracture Fixation Devices Joint Prostheses Cardiovascular Applications Tendons and Ligament Prostheses References Further Reading 5 Sterilization and Degradation Sterilization High Temperature Sterilization Methods Sterilization by Heat Dry Heat Moist Heat (Autoclave) Ethylene Oxide Radiation UV Radiation Ionizing Radiation Gamma Rays Electron Beam Radiation X-Ray Radiation Low Temperature Plasma Ozone Other Sterilization Methods Filter Sterilization Procedures of Disinfection Determination of the Microbiological Efficacy of Disinfectants Control of The Sterilization Efficacy Sterility Assurance Level Degradation Polymeric Materials (Plastics) Environmental Aging Oxidation Photoinduced Degradation Pyrolysis and High Temperature Degradation Mechanism Enzymatic and Bacterial Attack Chemical Attack Mechanical Degradation Effects of Sterilization Effect of High-Energy Radiations Degradation in the Physiological Environment Environmental Stress Cracking Bulk and Surface Erosion in Bioabsorbable Polymers Mineralization and Calcification Metallic Materials Corrosion Mechanism Passivity Types of Corrosion Uniform Attack Crevice Corrosion Pitting Corrosion Fretting Corrosion Galvanic Corrosion Intergranular Corrosion Corrosion in Biomedical Implants Ceramic Materials Wear Phenomena Types of Wear Adhesive Wear Abrasive Wear Fatigue Wear Corrosion Wear Measure of Wear Rate Wear in Biomedical Applications References Further Reading 6 Interactions Between Biomaterials and the Physiological Environment Physiological Structures and Mechanisms The Eukaryotic Animal Cell Tissue Types Connective Tissue Cells Extracellular Matrix Defense and Repair Mechanisms The Hemostatic System The Inflammatory Reaction The Immune System The Innate Immune System The Adaptive Immune System The Complement System Interactions Biomaterial/Human Body (Biocompatibility) Events Following Implantation Surface Phenomena After Biomaterial Implantation Response to Wear Debris Release of Toxic Products From the Biomaterial Bacterial Adhesion to Biomaterials and Strategies to Evade It Calcification References Further Reading 7 Techniques of Analysis Introduction Biomaterial Characterization Thermal Analyses Thermogravimetric Analysis, TGA Differential Thermal Analysis, DTA Differential Scanning Calorimetry, DSC Thermomechanical Analysis, TMA, and Dynamic TMA, DTMA Spectroscopic Analyses UV-Vis Spectroscopy Infrared (IR) spectroscopy Modes of Vibration Examples IR Spectrophotometer Attenuated Total Reflection Nuclear Magnetic Resonance spectroscopy 1H NMR Chromatographic Techniques High Performance Liquid Chromatography Gel-Permeation Chromatography X-Ray Techniques for Crystallinity Analysis Microscopy Techniques Optical (Light) Microscopy Stereo Microscopy Fluorescence Microscopy Electron Microscopy Transmission Electron Microscopy Scanning Electron Microscopy Environmental SEM Scanning Probe Microscopy Scanning Tunneling Microscopy Atomic Force Microscopy Surface Analysis Techniques Contact Angle for Wettability Profilometry Spectroscopic Techniques for Surface Analysis Electron Spectroscopies X-ray Photoelectron Spectroscopy (XPS) or ESCA (Electron Spectroscopy for Chemical Analysis) AES (Auger Electron Spectroscopy) Ion Spectroscopies Secondary Ion Mass Spectroscopy Diagnostic Techniques X-Ray Investigation X-Rays Use in Medicine X-Ray Radiography Mammography Angiography Fluoroscopy Computed Tomography, CT X-Rays for Treating Disease Magnetic Resonance Imaging How MRI Works When Using MRI Contrast Agent CT Versus MRI Ultrasound Imaging Biocompatibility and Cytocompatibility Analyses Cytotoxicity and Cytocompatibility Testing Hemocompatibility Testing Irritation Testing (Including Intracutaneous Reactivity) Acute Systemic Toxicity Testing Subacute and Subchronic Toxicity Testing Implantation Testing Genotoxicity, Carcinogenicity, and Reproductive Toxicity Testing References Further Reading 8 Advanced Applications Tissue Engineering Introduction Necessary Steps for Tissue Regeneration by Use of Scaffolds The Scaffold and Materials The Materials for the Preparation of the Scaffolds Degradation Mechanisms Synthetic Biodegradable Polymers Methods for Scaffold Fabrication Nondesigned Manufacturing Techniques Fiber Bonding Solvent Casting/Particulate Leaching Freeze Drying Phase Separation Gas Foaming Electrospinning Designed Manufacturing Techniques 3D Bioprinting Laser-Induced Forward Transfer Inkjet System Robotic Dispensing Soft Lithography The Cell Types Cell Lines Primary Cells and Tissue Cultures Stem Cells Induced Pluripotent Stem Cells Endothelial Cells and Neovascularization Dynamic Cell Culture and Bioreactors Fundamentals of Biotechnology Nucleic Acids: From Structure to Function Genetic Engineering Creating Genetically Modified Organisms Organism Cloning Gene Therapy Polymerase Chain Reaction References Further Reading Index A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Back Cover