ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Fluid Mechanics Fundamentals and Applications

دانلود کتاب مبانی مکانیک سیالات و برنامه های کاربردی

Fluid Mechanics Fundamentals and Applications

مشخصات کتاب

Fluid Mechanics Fundamentals and Applications

ویرایش: 3 
نویسندگان: ,   
سری:  
ISBN (شابک) : 0073380326, 9780073380322 
ناشر: McGraw-Hill Education 
سال نشر: 2013 
تعداد صفحات: 1031 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 23 مگابایت 

قیمت کتاب (تومان) : 49,000



کلمات کلیدی مربوط به کتاب مبانی مکانیک سیالات و برنامه های کاربردی: هوافضا، آیرودینامیک، طراحی و ساخت هواپیما، فضانوردی و پرواز فضایی، اویونیک، دینامیک گاز، فناوری نیروی محرکه، مهندسی، مهندسی و حمل و نقل، مواد شیمیایی، پوشش‌ها، سرامیک و شیشه، لوازم آرایشی، دینامیک سیالات، طراحی کارخانه و حمل و نقل، پلاستیک پدیده ها، مهندسی، مهندسی و حمل و نقل، علم مواد، علم مواد و مواد، مهندسی، مهندسی و حمل و نقل، مکانیک، نقشه کشی و نقشه کشی مکانیکی، دینامیک سیالات، مکانیک شکست، هیدرولیک



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 16


در صورت تبدیل فایل کتاب Fluid Mechanics Fundamentals and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب مبانی مکانیک سیالات و برنامه های کاربردی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب مبانی مکانیک سیالات و برنامه های کاربردی

اصول و کاربردهای مکانیک سیالات Cengel و Cimbala، مستقیماً با مهندسان فردا به روشی ساده و در عین حال دقیق ارتباط برقرار می کند. این متن اصول و معادلات اساسی مکانیک سیالات را در زمینه مثال‌های متعدد و متنوع مهندسی در دنیای واقعی پوشش می‌دهد. این متن به دانش‌آموزان کمک می‌کند تا با تأکید بر فیزیک، استفاده از شکل‌ها، عکس‌های متعدد و وسایل کمک بصری برای تقویت فیزیک، درک شهودی از مکانیک سیالات ایجاد کنند. رویکرد بسیار بصری یادگیری مکانیک سیالات را توسط دانش آموزان افزایش می دهد. این متن از طریق نحوه ارائه مطالب خود را از سایرین متمایز می کند - به ترتیبی پیش رونده از ساده به دشوارتر، که هر فصل را بر اساس پایه های ذکر شده در فصل های قبلی بنا می کند. به این ترتیب، حتی جنبه های سنتی چالش برانگیز مکانیک سیالات را می توان به طور موثر یاد گرفت. McGraw-Hill's Connect نیز به عنوان یک آیتم اختیاری در دسترس است. Connect تنها سیستم یادگیری یکپارچه ای است که دانش آموزان را با تطبیق مستمر برای ارائه دقیق آنچه که نیاز دارند، زمانی که به آن نیاز دارند، چگونه به آن نیاز دارند، توانمند می کند تا زمان کلاس موثرتر باشد. اتصال به استاد این امکان را می دهد که تکالیف، آزمون ها و تست ها را به راحتی تعیین کند و به طور خودکار نمرات کار دانش آموز را نمره گذاری و ثبت کند. مشکلات برای جلوگیری از اشتراک‌گذاری پاسخ‌ها تصادفی‌سازی می‌شوند و ممکن است یک «راه‌حل چند مرحله‌ای» نیز داشته باشند که به پیشرفت یادگیری دانش‌آموزان در صورت بروز مشکل کمک می‌کند.


توضیحاتی درمورد کتاب به خارجی

Cengel and Cimbala's Fluid Mechanics Fundamentals and Applications, communicates directly with tomorrow's engineers in a simple yet precise manner. The text covers the basic principles and equations of fluid mechanics in the context of numerous and diverse real-world engineering examples. The text helps students develop an intuitive understanding of fluid mechanics by emphasizing the physics, using figures, numerous photographs and visual aids to reinforce the physics. The highly visual approach enhances the learning of Fluid mechanics by students. This text distinguishes itself from others by the way the material is presented - in a progressive order from simple to more difficult, building each chapter upon foundations laid down in previous chapters. In this way, even the traditionally challenging aspects of fluid mechanics can be learned effectively. McGraw-Hill's Connect, is also available as an optional, add on item. Connect is the only integrated learning system that empowers students by continuously adapting to deliver precisely what they need, when they need it, how they need it, so that class time is more effective. Connect allows the professor to assign homework, quizzes, and tests easily and automatically grades and records the scores of the student's work. Problems are randomized to prevent sharing of answers an may also have a "multi-step solution" which helps move the students' learning along if they experience difficulty.



فهرست مطالب

Cover
S Title

FLUID  MECHANICS: FUNDAMENTALS AND APPLICATIONS, THIRD EDITION

Copyright
     © 2014 by The McGraw-Hill Companies, Inc
     ISBN 978-0-07-338032-2 
Dedication

About the Authors

Brief Contents

CONTENTS

Preface
     Background
     Objectives
     New to the Third Edition
     Philosophy and Goal
     Content and Organization
     Learning Tools
          Emphasis on Physics
          Effective Use of Association
          Self-Instructing
          Extensive Use of Artwork and Photographs
          Consistent Color Scheme for Figures
          Numerous Worked-Out Examples
          A Wealth of Realistic End-of-Chapter Problems
          Use of Common Notation
          A Choice of SI Alone or SI/English Units
          Combined Coverage of Bernoulli and Energy Equations
          A Separate Chapter on CFD
          Application Spotlights
          Glossary of Fluid Mechanics Terms
          Conversion Factors
          Nonmenclature
          Supplements
               Text Website
               Engineering Equation Solver (EES)
     Acknowledgments
     Online Resources for Students and Instructors


Chapter 1: Introduction and Basic Concepts
     1-1 Introduction
          What Is a Fluid?
          Application Areas of Fluid Mechanics
     1-2 A Brief History of Fluid Mechanics
     1-3 The No-Slip Condition
     1-4 Classification of Fluid Flows
          Viscous versus Inviscid Regions or Flow
          Internal versus External Flow
          Compressible versus Incompressible Flow
          Laminar versus Turbulent Flow
          Natural (or Unforced) versus Forced Flow
          Steady versus Unsteady Flow
          One-, Two-, and Three-Dimensional Flows
     1-5 System and Control Volume
     1-6 Importance of Dimensions and Units
          Some SI and English Units
          Dimensional Homogeneity
          Unity Conversion Rates
     1-7 Modeling in Engineering
     1-8 Problem-Solving Technique
          Step 1: Problem Statement
          Step 2: Schematic
          Step 3: Assumptions and Approximations
          Step 4: Physical Laws
          Step 5: Properties
          Step 6: Calculations
          Step 7: Reasoning, Venficat1on, and Discussion
     1-9 Engineering Software Packages
          Engineering Equation Solver (EES)
          CFD Software
     1-10 Accuracy, Precision, and Significant Digits
     Summary
     References and Suggested Reading
     Application Spotlight: What Nuclear Blasts and Raindrops Have in Common
     Problems


Chapter 2: Properties of Fluids
     2-1 Introduction
          Continuum
     2-2 Density and Specific Gravity
          Density of Ideal Gases
     2-3 Vapor Pressure and Cavitation
     2-4 Energy and Specific Heats
     2-5 Compressibility and Speed of Sound
          Coefficient of Compressibility
          Coefficient of Volume Expansion
          Speed of Sound and Mach Number
     2-6 Viscosity
     2-7 Surface Tension and Capillary Effect
          Capillary Effect
     Summary
     Application Spotlight: Cavitation
     References and Suggested Reading
     Problems


Chapter 3: Pressure and Fluid Statics
     3-1 Pressure
          Pressure at a Point
          Variation of Pressure with Depth
     3-2 Pressure Measurement Devices
          The Barometer
          The Manometer
          Other Pressure Measurement Devices
     3-3 Introduction to Fluid Statics
     3-4 Hydrostatic Forces on Submerged Plane Surfaces
          Special Case: Submerged Rectangular Plate
     3-5 Hydrostatic Forces on Submerged Curved Surfaces
     3-6 Buoyancy and Stability
          Stability of Immersed and Floating Bodies
     3-7 Fluids in Rigid-Body Motion
          Special Case 1: Fluids at Rest
          Special Case 2: Free Fall of a Fluid Body
          Acceleration on a Straight Path
          Rotation in a Cylindrical Container
     Summary
     References and Suggested Reading
     Problems


Chapter 4: Fluid Kinematics
     4-1 Lagrangian and Eulerian Descriptions
          Acceleration Field
          Material Derivative
     4-2 Flow Patterns and Flow Visualization
          Streamlines and Streamtubes
          Pathlines
          Streaklines
          Timelines
          Refractive Flow Visualization Techniques
          Surface Flow Visualization Techniques
     4-3 Plots of Fluid Flow Data
          Profile Plots
          Vector Plots
          Contour Plots
     4-4 Other Kinematic Descriptions
          Types of Motion or Deformation or Fluid Elements
     4-5 Vorticity and Rotationality
          Comparison of Two Circular Flows
     4-6 The Reynolds Transport Theorem
          Alternate Derivation of the Reynolds Transport Theorem
          Relationship between Material Derivative and RTT
     Summary
     Application Spotlight: Fluidic Actuators
     References and Suggested Reading
     Problems


Chapter 5: Bernoulli and Energy Equations
     5-1 Introduction
          Conservation of Mass
          The Linear Momentum Equation
          Conservation of Energy
     5-2 Conservation of Mass
          Mass and Volume Flow Rates
          Conservation of Mass Principle
          Moving or Deforming Control Volumes
          Mass Balance for Steady-Flow Processes
          Special Case: Incompressible Flow
     5-3 Mechanical Energy and Efficiency
     5-4 The Bernoulli Equation
          Acceleration of a Fluid Particle
          Derivation of the Bernoulli Equation
          Force Balance across Streamlines
          Unsteady, Compressible Flow
          Static, Dynamic, and Stagnation Pressures
          Limitations on the Use of the Bernoulli Equation
          Hydraulic Grade Line (HGL) and Energy Grade Line (EGL)
          Applications of the Bernoulli Equation
     5-5 General Energy Equation
          Energy Transfer by Heat, Q
          Energy Transfer by Work, W
     5-6 Energy Analysis of Steady Flows
          Special Case: Incompressible Flow with No Mechanical Work Devices and Negligible Friction
          Kinetic Energy Correction Facto, a
     Summary
     References and Suggested Reading
     Problems


Chapter 6: Momentum Analysis of Flow Systems
     6-1 Newton\'s Laws
     6-2 Choosing a Control Volume
     6-3 Forces Acting on a Control Volume
     6-4 The Linear Momentum Equation
          Special Cases
          Momentum-Flux Correction Factor ß
          Steady Flow
          Flow with No External Forces
     6-5 Review of Rotational Motion and Angular Momentum
     6-6 The Angular Momentum Equation
          Special Cases
          Flow with No External Moments
          Radial-Flow Devices
     Application Spotlight: Manta Ray Swimming
     Summary
     References and Suggested Reading
     Problems


Chapter 7: Dimensional Analysis and Modeling
     7-1 Dimensions and Units
     7-2 Dimensional Homogeneity
          Nondimensionalization of Equations
     7-3 Dimensional Analysis and Similarity
     7-4 The Method of Repeating Variables and The Buckingham Pi Theorem
          Historical Spotlight: Persons Honored by Nondimensional Parameters
     7-5 Experimental Testing, Modeling, and Incomplete Similarity
          Setup of an Experiment and Correlation of Experimental Data
          Incomplete Similarity
          Wind Tunnel Testing
          Flows with Free Surfaces
     Application Spotlight: How a Fly Flies
     Summary
     References and Suggested Reading
     Problems


Chapter 8: Internal Flow
     8-1 Introduction
     8-2 Laminar and Turbulent Flows
          Reynolds Number
     8-3 The Entrance Region
          Entry Lengths
     8-4 Laminar Flow in Pipes
          Pressure Drop and Head Loss
          Effect of Gravity on Velocity and Flow Rate in Laminar Flow
          Laminar Flow in Noncircular Pipes
     8-5 Turbulent Flow in Pipes
          Turbulent Shear Stress
          Turbulent Velocity Profile
          The Moody Chart and the Colebrook Equation
          Types of Fluid Flow Problems
     8-6 Minor Losses
     8-7 Piping Networks and Pump Selection
          Series and Parallel Pipes
          Piping Systems with Pumps and Turbines
     8-8 Flow Rate and Velocity Measurement
          Pitot and Pitot-Static Probes
          Obstruction Flowmeters: Orifice, Venturi, and Nozzle Meters
          Positive Displacement Flowmeters
          Turbine Flowmeters
          Variable-Area Flowmeters (Rota meters)
          Ultrasonic Flowmeters
          Electromagnetic Flowmeters
          Vortex Flowmeters
          Thermal (Hot-Wire and Hot-Film) Anemometers
          Laser Doppler Velocimetry
          Particle Image Velocimetry
          Introduction to Biofluid Mechanics
     Application Spotlight: PIV Applied to Cardiac Flow
     Summary
     References and Suggested Reading
     Problems


Chapter 9: Differential Analysis of Fluid Flow
     9-1 Introduction
     9-2 Conservation of Mass — The Continuity Equation
          Derivation Using the Divergence Theorem
          Derivation Using an Infinitesimal Control Volume
          Alternative Form of the Continuity Equation
          Continuity Equation in Cylindrical Coordinates
          Special Cases of the Continuity Equation
     9-3 The Stream Function
          The Stream Function in Cartesian Coordinates
          The Stream Function in Cylindrical Coordinates
          The Compressible Stream Function
     9-4 The Differential Linear Momentum Equation — Cauchy\'s Equation
          Derivation Using the Divergence Theorem
          Derivation Using an Infinitesimal Control Volume
          Alternative Form of Cauchy\'s Equation
          Derivation Using Newton\'s Second Law
     9-5 The Navier-Stokes Equation
          Introduction
          Newtonian versus Non-Newtonian Fluids
          Derivation of the Navier-stokes Equation for Incompressible, Isothermal Flow
          Continuity and Navier-stokes Equations in Cartesian Coordinates
          Continuity and Navier-stokes Equations in Cylindrical Coordinates
     9-6 Differential Analysis of Fluid Flow Problems
          Calculation of the Pressure Field for a Known Velocity Field
          Exact Solutions of the Continuity and Navier-stokes Equations
          Differential Analysis of Biofluid Mechanics Flows
     Application Spotlight: The No-Slip Boundary Condition
     Summary
     References and Suggested Reading
     Problems


Chapter 10: Approximate Solutions of the Navier-Stokes Equation
     10-1 Introduction
     10-2 Nondimensionalized Equations of Motion
     10-3 The Creeping Flow Approximation
          Drag on a Sphere in Creeping Flow
     10-4 Approximation for Inviscid Regions of Flow
          Derivation of the Bernoulli Equation in Inviscid Regions of Flow
     10-5 The Irrotational Flow Approximation
          Continuity Equation
          Momentum Equation
          Derivation of the Bernoulli Equation in Irrotational Regions of Flow
          Two-Dimensional Irrotational Regions of Flow
          Superposition in Irrotational Regions of Flow
          Elementary Planar Irrotational Flows
          Irrotational Flows Formed by Superposition
     10-6 The Boundary Layer Approximation
          The Boundary Layer Equations
          The Boundary Layer Procedure
          Displacement Thickness
          Momentum Thickness
          Turbulent Flat Plate Boundary Layer
          Boundary Layers with Pressure Gradients
          The Momentum Integral Technique for Boundary Layers
     Summary
     References and Suggested Reading
     Application Spotlight: Droplet Formation
     Problems


Chapter 11: External Flow: Drag and Lift
     11-1 Introduction
     11-2 Drag and Lift
     11-3 Friction and Pressure Drag
          Reducing Drag by Streamlining
          Flow Separation
     11-4 Drag Coefficients of Common Geometries
          Biological Systems and Drag
          Drag Coefficients of Vehicles
          Superposition
     11-5 Parallel Flow Over Flat Plates
          Friction Coefficient
     11-6 Flow Over Cylinders And Spheres
          Effect of Surface Roughness
     11-7 Lift
          Finite-Span Wings and Induced Drag
          Lift Generated by Spinning
     Summary
     References and Suggested Reading
     Application Spotlight: Drag Reduction
     Problems


Chapter 12: Compressible Flow
     12-1 Stagnation Properties
     12-2 One-Dimensional Isentropic Flow
          Variation of Fluid Velocity with Flow Area
          Property Relations for Isentropic Flow of Ideal Gases
     12-3 Isentropic Flow Through Nozzles
          Converging Nozzles
          Converging-Diverging Nozzles
     12-4 Shock Waves and Expansion Waves
          Normal Shocks
          Oblique Shocks
          Prandtl-Meyer Expansion Waves
     12-5 Duct Flow With Heat Transfer and Negligible Friction (Rayleigh Flow)
          Property Relations for Rayleigh Flow
          Choked Rayleigh Flow
     12-6 Adiabatic Duct Flow With Friction (Fanno Flow)
          Property Relations for Fanno Flow
          Choked Fanno Flow
     Application Spotlight: Shock-Wave/Boundary-Layer Interactions
     Summary
     References and Suggested Reading
     Problems


Chapter 13: Open-Channel Flow
     13-1 Classification of Open-Channel Flows
          Uniform and Vaned Flows
          Laminar and Turbulent Flows in Channels
     13-2 Froude Number and Wave Speed
          Speed of Surface Waves
     13-3 Specific Energy
     13-4 Conservation of Mass and Energy Equations
     13-5 Uniform Flow in Channels
          Critical Uniform Flow
          Superposition Method for Nonuniform Perimeters
     13-6 Best Hydraulic Cross Sections
          Rectangular Channels
          Trapezoidal Channels
     13-7 Gradually Varied Flow
          Liquid Surface Profiles in Open Channels, y(x)
          Some Representative Surface Profiles
          Numerical Solution of Surface Profile
     13-8 Rapidly Varied Flow and The Hydraulic Jump
     13-9 Flow Control and Measurement
          Underflow Gates
          Overflow Gates
     Application Spotlight: Bridge Scour
     Summary
     References and Suggested Reading
     Problems


Chapter 14: Turbomachinery
     14-1 Classifications and Terminology
     14-2 Pumps
          Pump Performance Curves and Matching a Pump to a Piping System
          Pump cavitation and Net Positive Suction Head
          Pumps in Series and Parallel
          Positive-Displacement Pumps
          Dynamic Pumps
          Centrifugal Pumps
          Axial Pumps
     14-3 Pump Scaling Laws
          Dimensional Analysis
          Pump Specific Speed
          Affinity Laws
     14-4 Turbines
          Positive-Displacement Turbines
          Dynamic Turbines
          Impulse Turbines
          Reaction Turbines
          Gas and Steam Turbines
          Wind Turbines
     14-5 Turbine Scaling Laws
          Dimensionless Turbine Parameters
          Turbine Specific Speed
     Application Spotlight: Rotary Fuel Atomizers
     Summary
     References and Suggested Reading
     Problems


Chapter 15: Introduction to Computational Fluid Dynamics
     15-1 Introduction and Fundamentals
          Motivation
          Equations of Motion
          Solution Procedure
          Additional Equations of Motion
          Grid Generation and Grid Independence
          Boundary Conditions
          Practice Makes Perfect
     15-2 Laminar CFD Calculations
          Pipe Flow Entrance Region at Re = 500
          Flow around a Circular Cylinder at Re = 150
     15-3 Turbulent CFD Calculations
          Flow around a Circular Cylinder at Re = 10,000
          Flow around a Circular Cylinder at Re = 107
          Design of the Stator for a Vane-Axial Flow Fan
     15-4 CFD With Heat Transfer
          Temperature Rise through a Cross-Flow Heat Exchanger
          Cooling of an Array of Integrated Circuit Chips
     15-5 Compressible Flow CFD Calculations
          Compressible Flow through a Converging-Diverging Nozzle
          Oblique Shocks over a Wedge
     15-6 Open-Channel Flow CFD Calculations
          Flow over a Bump on the Bottom of a Channel
          Flow through a Sluice Gate (Hydraulic Jump)
     Application Spotlight: A Virtual Stomach
     Summary
     References and Suggested Reading
     Problems


Appendix 1: Property Tables and Charts (SI Units)
     Table A-1 Molar Mass, Gas Constant, and Ideal-Gas Specific Heats of Some Substances
     Table A-2 Boiling and Freezing Point Properties
     Table A-3 Properties of Saturated Water
     Table A-4 Properties of Saturated Refrigerant-134a
     Table A-5 Properties of Saturated Ammonia
     Table A-6 Properties of Saturated Propane
     Table A-7 Properties of Liquids
     Table A-8 Properties of Liquid Metals
     Table A-9 Properties of Air at 1 atm Pressure
     Table A-10 Properties of Gases at 1 atm Pressure
     Table A-11 Properties of the Atmosphere at High Altitude
     Figure A-12 The Moody Chart for the Friction Factor for Fully Developed Flow in Circular Pipes
     Table A-13 One-Dimensional Isentropic Compressible Flow Functions for an Ideal Gas with k = 1.4
     Table A-14 One-Dimensional Normal Shock Functions for an Ideal Gas with k = 1.4
     Table A-15 Rayleigh Flow Functions for an Ideal Gas with k = 1.4
     Table A-16 Fanno Flow Functions for an Ideal Gas with k = 1.4

Appendix 2: Property Tables and Charts (English Units)
     Table A-1E Molar Mass, Gas Constant, and Ideal-Gas Specific Heats of Some Substances
     Table A-2E Boiling and Freezing Point Properties
     Table A-3E Properties of Saturated Water
     Table A-4E Properties of Saturated Refrigerant-134a
     Table A-5E Properties of Saturated Ammonia
     Table A-6E Properties of Saturated Propane
     Table A-7E Properties of Liquids
     Table A-8E Properties of Liquid Metals
     Table A-9E Properties of Air at 1 atm Pressure
     Table A-10E Properties of Gases at 1 atm Pressure
     Table A-11E Properties of the Atmosphere at High Altitude


Glossary
    

INDEX
     

Nomenclature
     Latin Letters
     Greek Letters
     Subscripts
     Superscripts

Quick References
     Conversion Factors
     Some Physical Constants
     Commonly Used Properties
     Air at 20°C (68°F) and 1 atm
     Liquid water at 20°C (68°F) and 1 atm

Errata




نظرات کاربران