ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Flow Dynamics and Tissue Engineering of Blood Vessels

دانلود کتاب دینامیک جریان و مهندسی بافت عروق خونی

Flow Dynamics and Tissue Engineering of Blood Vessels

مشخصات کتاب

Flow Dynamics and Tissue Engineering of Blood Vessels

ویرایش:  
نویسندگان:   
سری: IPEM–IOP Series in Physics and Engineering in Medicine and Biology 
ISBN (شابک) : 0750320869, 9780750320863 
ناشر: IOP Publishing 
سال نشر: 2020 
تعداد صفحات: 314
[315] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 24 Mb 

قیمت کتاب (تومان) : 56,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Flow Dynamics and Tissue Engineering of Blood Vessels به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب دینامیک جریان و مهندسی بافت عروق خونی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب دینامیک جریان و مهندسی بافت عروق خونی

دینامیک جریان و مهندسی بافت رگ‌های خونی پدیده‌های فیزیکی انطباق عروق و تأثیر آن بر دینامیک جریان خون و همچنین اصلاح ساختارهای جریان در حضور بیماری‌های درون دیواره عروق یا محتوای خون بیمار را بررسی می‌کند. این جلد همچنین پیشرفت مهندسی بافت برای مداخله رگ‌های خونی بازسازی‌شده را نشان می‌دهد. مدل‌های ارگانوئیدی رگ‌های خونی، جنبه‌های کنترلی آن‌ها، و رگ‌های خونی مبتنی بر پلت‌فرم‌های میکروسیالی به دنبال درک فیزیک جریان خون در یک پلت‌فرم مشابه نشان داده شده‌اند. هدف این کتاب ارائه مروری بر اصول پزشکی بازساختی و مکانیک مایعات برای مدیریت عروق خونی دارای بیماری بالینی است. نویسندگان در مورد جنبه‌های مهندسی بافت و اصول مکانیکی سیالات محاسباتی و چگونگی استفاده از آنها برای درک وضعیت رگ‌های خونی در شرایط بیمار بحث می‌کنند. ویژگی‌های کلیدی اصول دینامیک سیالات محاسباتی و تجربی برای بررسی مدل‌سازی عروق خونی بیمار استفاده شده است. اصول دینامیک مایعات و مهندسی بافت برای پیشنهاد طرح‌های نوآورانه بیوراکتورها برای بازسازی عروق خونی استفاده می‌شود. جنبه‌های کنترل پارامترهای مختلف در حین توسعه بیوراکتورهای عروق خونی و مدل‌های ارگانوئیدی به طور انتقادی ارائه شده است، و تکنیک‌های بهینه‌سازی برای این پارامترها نیز ارائه شده است.


توضیحاتی درمورد کتاب به خارجی

Flow Dynamics and Tissue Engineering of Blood Vessels explores the physical phenomena of vessel compliance and its influence on blood flow dynamics, as well as the modification of flow structures in the presence of diseases within the vessel wall or diseased blood content. This volume also illustrates the progress of tissue engineering for the intervention of re-engineered blood vessels. Blood vessel organoid models, their controlling aspects, and blood vessels based on microfluidic platforms are illustrated following on from the understanding of flow physics of blood on a similar platform. The purpose of this book is to provide an overview of regenerative medicine and fluid mechanics principles for the management of clinically diseased blood vessels. Authors discuss tissue engineering aspects and computational fluid mechanical principles, and how they can be used to understand the state of blood vessels in diseased conditions. Key Features Computational and experimental fluid dynamics principles have been used to explore the modelling of diseased blood vessels Principles of fluid dynamics and tissue engineering are used to propose innovative designs of bioreactors for blood vessel regeneration Offers experimental analytical studies of blood flow in vessels with pathological conditions Controlling aspects of various parameters while developing blood-vessel bioreactors and organoid models are presented critically, and optimization techniques for these parameters are also provided



فهرست مطالب

PRELIMS.pdf
	Preface
	Editor biographies
		Arindam Bit
		Jasjit S Suri
	Contributors
CH001.pdf
	Chapter 1 Anatomy and physiology of blood vessels
		1.1 Introduction
		1.2 Structure of blood vessel
			1.2.1 Tunica intima
			1.2.2 Tunica media
			1.2.3 Tunica externa
		1.3 Types of blood vessels
			1.3.1 Arteries
			1.3.2 Pulmonary artery
			1.3.3 Coronary artery
			1.3.4 Systemic artery
			1.3.5 Hepatic artery
			1.3.6 Carotid artery
			1.3.7 Retinal artery
			1.3.8 Splenic artery
			1.3.9 Capillaries
			1.3.10 Fenestrated capillaries
			1.3.11 Sinusoidal capillaries
			1.3.12 Continuous capillaries
			1.3.13 Veins
			1.3.14 Pulmonary vein
			1.3.15 Systemic veins
			1.3.16 The heart veins
			1.3.17 The veins of the head and neck
			1.3.18 The veins present in the exterior part of the head and face
			1.3.19 The veins in the neck
			1.3.20 The veins of the brain
			1.3.21 Opthalmic vein
			1.3.22 Hepatic vein
			1.3.23 Splenic vein
		1.4 Circulatory networks
			1.4.1 Pulmonary circulation
			1.4.2 Coronary circulation
			1.4.3 Systemic circulation
		1.5 Physiology of blood flow
			1.5.1 Blood flow between capillaries and tissues
			1.5.2 Regulation of blood pressure
			1.5.3 Baroreceptor response
			1.5.4 Chemoreceptor response
			1.5.5 Rennin–angiotensin–aldosterine activation system
			1.5.6 Autoregulation of blood flow
		1.6 Conclusion
		References
CH002.pdf
	Chapter 2 Neurovascular structure and function
		2.1 Introduction
		2.2 Pathology in neurovascular units
		2.3 Medial neurovascular structures
		2.4 Cerebral vascular disease in ischemic stroke
		2.5 Vascular risk factors
		2.6 Neurovascular mechanics
		2.7 Pathology of microvascular components in the NVU
		2.8 Neurogenesis and neurovascular homeostasis
		2.9 Neurovascular structure at coronal segment
		2.10 Neurovascular structure and pathology near the foot
		2.11 Neurovascular pathology at the shoulder joint
		2.12 Neurovasculature at the hip joint and meniscus
		2.13 Conclusion
		References
CH003.pdf
	Chapter 3 3D bioprinting in tissue engineering and regenerative medicine
		3.1 Introduction
		3.2 Types of 3D bioprinting
			3.2.1 Extrusion-based bioprinting
			3.2.2 Inkjet bioprinting
			3.2.3 Laser based bioprinting
		3.3 Hard tissue engineering
			3.3.1 Bone
			3.3.2 Cartilage
		3.4 Soft tissue engineering
			3.4.1 Vascular tissue
			3.4.2 Skin
		3.5 Tissue engineering for application in specific organs
			3.5.1 Liver
			3.5.2 Kidney
			3.5.3 Bladder
			3.5.4 Retina
		3.6 Conclusion
		References
CH004.pdf
	Chapter 4 Numerical analysis of blood flow in vasculature structure
		4.1 Introduction
		4.2 Methodology
			4.2.1 Construction of geometry
		4.3 Results and discussion
			4.3.1 Hemodynamics of blood through axi-symmetric aneurismal blood vessel
			4.3.2 Comparative assessment of hemodynamics of blood in a stenosed or aneurismal vessel
		4.4 Conclusion
		References
CH005.pdf
	Chapter 5 Numerical analysis of blood flow in a micro-capillary in in vitro conditions
		5.1 Introduction
		5.2 Methodology
			5.2.1 Micro-viscometer study
		5.3 Numerical modeling
		5.4 Grid independence study
		5.5 Results and discussions
			5.5.1 Evaluation of fluid flow parameter in a microviscometer
		5.6 Numerical assessment of the rheological model for blood flowing in an inclined plane
		5.7 Discussion
		5.8 Conclusion
		References
CH006.pdf
	Chapter 6 Experimental analysis of blood flow in vessels with pathological conditions
		6.1 Introduction
		6.2 Methodology
			6.2.1 Overview of experimental table
			6.2.2 lDV principle
		6.3 Laser head
		6.4 Plasma tube
		6.5 Power supply
		6.6 Multi-colour beam splitter
		6.7 Fiber optic transmitter probe
		6.8 Photo detector module
		6.9 FSA signal processor
		6.10 Down-mixer
		6.11 Burst acquisition system
		6.12 Photo multiplier tube voltage
		6.13 Burst threshold
		6.14 SNR and downmixing frequency
		6.15 Noise in LDV
		6.16 Test bench of blood vessel
		6.17 Result
			6.17.1 Analysis of stenosis influence length
		6.18 Uncertainty analysis
			6.18.1 Shifted frequency of reflected light at the receiver (fr)
		6.19 Conclusion
		References
CH007.pdf
	Chapter 7 Biomaterials for a synthetic and tissue engineered blood vessel
		7.1 Introduction
		7.2 Blood–biomaterial interaction
		7.3 Synthetic polymer
		7.4 Natural polymer
		7.5 Decellularized matrix
		7.6 Hybrid material
		7.7 Assessment of practical use of a vascular graft
		7.8 Conclusion
		References
CH008.pdf
	Chapter 8 3D printing technology, bioink, fabrication technique of blood vessel and system used for cell culturing
		8.1 Introduction
		8.2 3D printing technology for tissue engineering
			8.2.1 Fused deposition modelling (FDM)
			8.2.2 Selective laser sintering: the laser based
			8.2.3 Stereolithography
			8.2.4 Laser metal deposition
			8.2.5 Digital laser processing
			8.2.6 Jet-based bioprinting technology
			8.2.7 Inkjet printing
			8.2.8 Micro-valve printing
			8.2.9 Acoustic printing
			8.2.10 Laser-assisted printing
			8.2.11 Electrospun
			8.2.12 Electrohydrodynamic jet printing
		8.3 Bio-ink/Biomaterial
			8.3.1 Criteria for selection of biomaterial
			8.3.2 Types of biomaterials
		8.4 Blood vessel formation using a 3D printer
			8.4.1 Anatomy of a blood vessel
			8.4.2 Self-assembly approach
			8.4.3 Extrusion-based 3D printing system with rotatory printing device
			8.4.4 Drop and demand method
			8.4.5 Hydrogel bio-printed micro-channel
			8.4.6 Laser-based 3D bioprinting of a blood vessel
			8.4.7 Embedded bioprinting for vascular engineering
		8.5 Importance of bioreactors
		8.6 Conclusion
		References
CH009.pdf
	Chapter 9 Blood flow evaluation in different circulatory systems
		9.1 Introduction
		9.2 Methodology
		9.3 Results and discussions
		9.4 Conclusion
		References
CH010.pdf
	Chapter 10 Fabrication techniques of artificial blood vessels
		10.1 Introduction
		10.2 Cell types used for blood vessel regeneration
		10.3 Techniques for the regeneration of blood vessels
			10.3.1 Scaffold-free technology
			10.3.2 Freeze drying
			10.3.3 Decellularized vascular graft
		10.4 Bioprinting technique
		10.5 Electrospinning
		10.6 Hybrid scaffold fabrication technique
		10.7 Characterization of an artificial blood vessel
		10.8 Mechanical properties of an artificially fabricated blood vessel by different techniques
		10.9 Conclusion
		References
CH011.pdf
	Chapter 11 Bioreactors for tissue engineered blood vessels
		11.1 Introduction
		11.2 Properties of a bioreactor
		11.3 Blood vessel bioreactors
			11.3.1 Pulsatile perfusion bioreactor
			11.3.2 Biaxial bioreactor
			11.3.3 VascuTrainer bioreactor
			11.3.4 Perfusion bioreactor with longitudinal stretch
			11.3.5 Pulsatile flow bioreactors
			11.3.6 Bioreactor with cyclic strain
			11.3.7 Multi-cue bioreactor
		11.4 Bioreactors specifically designed for tissue engineered heart valves
			11.4.1 Cardiac valve bioreactor
			11.4.2 Pulsatile bioreactors for cardiac valves
		11.5 Conclusion
		References
CH012.pdf
	Chapter 12 An artificial blood vessel and its controlling aspects—I
		12.1 Introduction
		12.2 Formation of blood vessels in the human body
		12.3 New capillaries formed from sprouting
		12.4 Angiogenesis controlling factors
		12.5 Functions of blood vessels
		12.6 Biological control of blood vessel structure and its effects on various physiological parameters
		12.7 Need for artificial blood vessels
			12.7.1 Buerger’s disease
			12.7.2 Peripheral venous disease and varicose veins
			12.7.3 Raynaud’s disease or Raynaud’s syndrome
		12.8 Development of artificial blood vessels through tissue engineering
		12.9 Vascular tissue regeneration
			12.9.1 Decellularized matrices based scaffolds
			12.9.2 Scaffolds from natural polymers
			12.9.3 Scaffolds from biodegradable synthetic polymers
			12.9.4 Synthetic and natural scaffolds
			12.9.5 Hybrid scaffolds from synthetic and natural polymers
			12.9.6 TEVGs without scaffolds
		12.10 Selection of biomaterials and design parameters
		12.11 Biomaterials preferred for preparing vascular grafts
			12.11.1 Synthetic nondegradable polymers (ePTFE, dacron and polyurethanes)
			12.11.2 Polymer functionalization
			12.11.3 Degradable scaffolds
			12.11.4 Biopolymers
			12.11.5 Nanocomposites
			12.11.6 Alternative tissue sources
		12.12 Controlling factors and functional requirements in blood vessel tissue engineering
			12.12.1 Mechanical requirements
			12.12.2 Biological requirements
		12.13 Vascular grafts and their main applications
		References and further reading
CH013.pdf
	Chapter 13 Control aspects of the circulatory system
		13.1 Introduction
		13.2 Passive control system of circulatory system
			13.2.1 The ventricles
			13.2.2 The atria
			13.2.3 The systemic and pulmonary vessels
		13.3 Neural and humoral control system
			13.3.1 Baroreceptor reflexes
			13.3.2 Input–output relationship of the baroreceptor
		13.4 Transformation of afferent baroreceptor signals into heart rate
			13.4.1 Control of cardiac contractility
			13.4.2 Sympathetic control of fluid resistance of systematic arterioles
			13.4.3 Control of systemic venous volume
			13.4.4 Model of cardiovascular control loop
		13.5 Behaviour of the controlled cardiovascular system
			13.5.1 Cardiac rhythm caused by the LV assist pump
			13.5.2 Animal experiment
			13.5.3 Role of circulatory system in LV by-pass surgery
		13.6 Cardiovascular circulatory system and assist pump model
		13.7 Conclusion
		References
CH014.pdf
	Chapter 14 Control aspects of a heart assistive device
		14.1 Introduction
		14.2 AP phase control
		14.3 Amplitude AP control
		14.4 Bioengineering analysis of heart failure
		14.5 Automatic bypassed AP control system
		14.6 Fluid mechanical simulator to cardiovascular system
		14.7 Design of a mechanical simulator
			14.7.1 Design of a vascular system for the mechanical circulatory simulator
		14.8 Design of control valve system
			14.8.1 Aortic pressure control system
			14.8.2 Pump flow control system
		14.9 Basic characteristics of the mechanical simulator
			14.9.1 Hydrodynamics under standard conditions
			14.9.2 Evaluation of Starling curve
			14.9.3 ‘Blood transfusion’ experiment
			14.9.4 Comparative test on a single artificial heart (SAH)
		14.10 Conclusion
		References




نظرات کاربران