دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Ranjan Vepa
سری:
ISBN (شابک) : 9781032210032, 9781003266310
ناشر: CRC Press
سال نشر: 2023
تعداد صفحات: 642
[643]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 22 Mb
در صورت تبدیل فایل کتاب Flight Dynamics, Simulation, and Control For Rigid and Flexible Aircraft به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دینامیک پرواز، شبیه سازی و کنترل برای هواپیماهای صلب و انعطاف پذیر نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
دینامیک پرواز، شبیه سازی و کنترل هواپیما: برای هواپیماهای صلب و انعطاف پذیر اصول دینامیک هواپیماهای غیرخطی و اصول طراحی هواپیما با پیکربندی کنترلی را توضیح می دهد، همانطور که در هواپیماهای صلب و انعطاف پذیر، پهپادها و وسایل نقلیه هوایی بدون سرنشین (پهپادها) اعمال می شود. ). این کتاب با پرداختن به جزئیات مدلسازی دینامیکی، شبیهسازی و کنترل در مجموعهای از هواپیما، مفاهیم کلیدی مرتبط با هواپیمای الاستیک با پیکربندی کنترل را بررسی میکند. همچنین دینامیک معمولی هواپیماهای صلب را پوشش میدهد و استفاده از تکنیکهای خطی و غیرخطی مبتنی بر مدل و کاربردهای آنها برای کنترل پرواز را بررسی میکند. این نسخه دوم دارای فصل جدیدی در دینامیک و اصول کنترل پهپادها و پهپادها است که به طراحی هواپیماهای جدیدتر با ترکیبی از سطوح کنترل پیشرانه و آیرودینامیکی کمک می کند. علاوه بر این، کتاب شامل بخشهای جدید، تقریباً 20 مسئله در هر فصل، مثالها، تمرینهای شبیهساز و مطالعات موردی برای افزایش و تقویت درک دانشآموز است. این کتاب برای دانشجویان ارشد و کارشناسی ارشد مهندسی مکانیک و هوافضا در نظر گرفته شده است که دروس دینامیک پرواز و کنترل پرواز را می گذرانند. مدرسان می توانند از راهنمای راه حل های به روز شده و اسلایدهای شکل برای دوره خود استفاده کنند.
Flight Dynamics, Simulation, and Control of Aircraft: For Rigid and Flexible Aircraft explains the basics of non-linear aircraft dynamics and the principles of control-configured aircraft design, as applied to rigid and flexible aircraft, drones, and unmanned aerial vehicles (UAVs). Addressing the details of dynamic modeling, simulation, and control in a selection of aircraft, the book explores key concepts associated with control-configured elastic aircraft. It also covers the conventional dynamics of rigid aircraft and examines the use of linear and non-linear model-based techniques and their applications to flight control. This second edition features a new chapter on the dynamics and control principles of drones and UAVs, aiding in the design of newer aircraft with a combination of propulsive and aerodynamic control surfaces. In addition, the book includes new sections, approximately 20 problems per chapter, examples, simulator exercises, and case studies to enhance and reinforce student understanding. The book is intended for senior undergraduate and graduate mechanical and aerospace engineering students taking Flight Dynamics and Flight Control courses. Instructors will be able to utilize an updated Solutions Manual and figure slides for their course.
Cover Half Title Title Page Copyright Page Dedication Table of Contents List of Acronyms Preface Author Chapter 1 Introduction to Flight Vehicles 1.1 Introduction 1.2 Components of an Aeroplane 1.2.1 Fuselage 1.2.2 Wings 1.2.3 Tail Surfaces or Empennage 1.2.4 Landing Gear 1.3 Basic Principles of Flight 1.3.1 Forces Acting on an Aeroplane 1.3.2 Drag and Its Reduction 1.3.3 Aerodynamically Conforming Shapes: Streamlining 1.3.4 Stability and Balance 1.4 Flying Control Surfaces: Elevator, Ailerons and Rudder 1.4.1 Flaps, High-Lift and Flow Control Devices 1.4.2 Introducing Boundary Layers 1.4.3 Spoilers 1.5 Pilot's Controls: The Throttle, the Control Column and Yoke, the Rudder Pedals and the Toe Brakes 1.6 Modes of Flight 1.6.1 Static and In-Flight Stability Margins 1.7 Power Plant 1.7.1 Propeller-Driven Aircraft 1.7.2 Jet Propulsion 1.8 Avionics, Instrumentation and Systems 1.8.1 Autonomous Navigation 1.9 Geometry of Aerofoils and Wings 1.9.1 Aerofoil Geometry 1.9.2 Chord Line 1.9.3 Camber 1.9.4 Leading and Trailing Edges 1.9.5 Specifying Aerofoils 1.9.6 Equations Defining Mean Camber Line 1.9.7 Aerofoil Thickness Distributions 1.9.8 Wing Geometry Chapter Highlights Exercises Answers to Selected Exercises References Chapter 2 Basic Principles Governing Aerodynamic Flows 2.1 Introduction 2.2 Continuity Principle 2.2.1 Streamlines and Stream Tubes 2.3 Bernoulli's Principle 2.4 Laminar Flows and Boundary Layers 2.5 Turbulent Flows 2.6 Aerodynamics of Aerofoils and Wings 2.6.1 Flow Around an Aerofoil 2.6.2 Mach Number and Subsonic and Supersonic Flows 2.7 Properties of Air in the Atmosphere 2.7.1 Composition of the Atmosphere: The Troposphere, Stratosphere, Mesosphere, Ionosphere and Exosphere 2.7.2 Air Density 2.7.3 Temperature 2.7.4 Pressure 2.7.5 Effects of Pressure and Temperature 2.7.6 Viscosity 2.7.7 Bulk Modulus of Elasticity 2.7.8 Temperature Variations with Altitude: The Lapse Rate 2.8 International Standard Atmosphere (from ESDU 77021, 1986) 2.9 Generation of Lift and Drag 2.10 Aerodynamic Forces and Moments 2.10.1 Aerodynamic Coefficients 2.10.2 Aerofoil Drag 2.10.3 Aircraft Lift Equation and Lift Curve Slope 2.10.4 Centre of Pressure 2.10.5 Aerodynamic Centre 2.10.6 Pitching Moment Equation 2.10.7 Elevator Hinge Moment Coefficient Chapter Highlights Exercises Answers to Selected Exercises References Chapter 3 Mechanics of Equilibrium Flight 3.1 Introduction 3.2 Speeds of Equilibrium Flight 3.3 Basic Aircraft Performance 3.3.1 Optimum Flight Speeds 3.4 Conditions for Minimum Drag 3.5 Stability in the Vicinity of the Minimum Drag Speed 3.6 Range and Endurance Estimation 3.7 Trim 3.8 Stability of Equilibrium Flight 3.9 Longitudinal Static Stability 3.9.1 Neutral Point (Stick-Fixed) 3.9.2 Neutral Point (Stick-Free) 3.10 Manoeuvrability 3.10.1 Pull-Out Manoeuvre 3.10.2 Manoeuvre Margin: Stick-Fixed 3.10.3 Manoeuvre Margin: Stick-Free 3.11 Lateral Stability and Stability Criteria 3.12 Experimental Determination of Aircraft Stability Margins 3.13 Summary of Equilibrium- and Stability-Related Equations Chapter Highlights Exercises Answers to Selected Exercises References Chapter 4 Aircraft Non-Linear Dynamics: Equations of Motion 4.1 Introduction 4.2 Aircraft Dynamics 4.3 Aircraft Motion in a 2D Plane 4.4 Moments of Inertia 4.5 Euler's Equations and the Dynamics of Rigid Bodies 4.6 Description of the Attitude or Orientation 4.7 Aircraft Equations of Motion 4.8 Motion-Induced Aerodynamic Forces and Moments 4.9 Non-Linear Dynamics of Aircraft Motion and Stability Axes 4.9.1 Equations of Motion in Wind Axis Coordinates, V[sub(T)], α and β 4.9.2 Reduced-Order Modelling: The Short-Period Approximations 4.10 Trimmed Equations of Motion 4.10.1 Non-Linear Equations of Perturbed Motion 4.10.2 Linear Equations of Motion Chapter Highlights Exercises References Chapter 5 Small Perturbations and the Linearised, Decoupled Equations of Motion 5.1 Introduction 5.2 Small Perturbations and Linearisations 5.3 Linearising the Aerodynamic Forces and Moments: Stability Derivative Concept 5.4 Direct Formulation in the Stability Axis 5.5 Decoupled Equations of Motion 5.5.1 Case I: Motion in the Longitudinal Plane of Symmetry 5.5.2 Case II: Motion in the Lateral Direction, Perpendicular to the Plane of Symmetry 5.6 Decoupled Equations of Motion in Terms of the Stability Axis Aerodynamic Derivatives 5.7 Addition of Aerodynamic Controls and Throttle 5.8 Non-Dimensional Longitudinal and Lateral Dynamics 5.9 Simplified State-Space Equations of Longitudinal and Lateral Dynamics 5.10 Simplified Concise Equations of Longitudinal and Lateral Dynamics Chapter Highlights Exercises Reference Chapter 6 Longitudinal and Lateral Linear Stability and Control 6.1 Introduction 6.2 Dynamic and Static Stability 6.2.1 Longitudinal Stability Analysis 6.2.2 Lateral Dynamics and Stability 6.3 Modal Description of Aircraft Dynamics and the Stability of the Modes 6.3.1 Slow–Fast Partitioning of the Longitudinal Dynamics 6.3.2 Slow–Fast Partitioning of the Lateral Dynamics 6.3.3 Summary of Longitudinal and Lateral Modal Equations 6.3.3.1 Phugoid or Long Period 6.3.3.2 Short Period 6.3.3.3 Third Oscillatory Mode 6.3.3.4 Roll Subsidence 6.3.3.5 Dutch Roll 6.3.3.6 Spiral 6.4 Aircraft Lift and Drag Estimation 6.4.1 Fuselage Lift and Moment Coefficients 6.4.2 Wing–Tail Interference Effects 6.4.3 Estimating the Wing's Maximum Lift Coefficient 6.4.4 Drag Estimation 6.5 Estimating the Longitudinal Aerodynamic Derivatives 6.6 Estimating the Lateral Aerodynamic Derivatives 6.7 Perturbation Analysis of Trimmed Flight 6.7.1 Perturbation Analysis of Longitudinal Trimmed Flight 6.7.2 Perturbation Analysis of Lateral Trimmed Flight 6.7.2.1 Control Settings for Steady Sideslip 6.7.2.2 Control Settings for Turn Coordination and Banking 6.7.3 Perturbations of Coupled Trimmed Flight 6.7.4 Simplified Analysis of Complex Manoeuvres: The Sidestep Manoeuvre Chapter Highlights Exercises Answers to Selected Exercises Note References Chapter 7 Aircraft Dynamic Response: Numerical Simulation and Non-Linear Phenomenon 7.1 Introduction 7.2 Longitudinal and Lateral Modal Equations 7.3 Methods of Computing Aircraft Dynamic Response 7.3.1 Laplace Transform Method 7.3.2 Aircraft Response Transfer Functions 7.3.3 Direct Numerical Integration 7.4 System Block Diagram Representation 7.4.1 Numerical Simulation of Flight Using MATLAB[sup(®)]/Simulink[sup(®)] 7.5 Atmospheric Disturbance: Deterministic Disturbances 7.6 Principles of Random Atmospheric Disturbance Modelling 7.6.1 White Noise: Power Spectrum and Autocorrelation 7.6.2 Linear Time-Invariant System with Stochastic Process Input 7.7 Application to Atmospheric Turbulence Modelling 7.8 Aircraft Non-Linear Dynamic Response Phenomenon 7.8.1 Aircraft Dynamic Non-Linearities and Their Analysis 7.8.2 High-Angle-of-Attack Dynamics and Its Consequences 7.8.3 Post-Stall Behaviour 7.8.4 Tumbling and Autorotation 7.8.5 Lateral Dynamic Phenomenon 7.8.6 Flat Spin and Deep Spin 7.8.7 Wing Drop, Wing Rock and Nose Slice 7.8.8 Fully Coupled Motions: The Falling Leaf 7.8.9 Regenerative Phenomenon Chapter Highlights Exercises References Chapter 8 Aircraft Flight Control 8.1 Automatic Flight Control Systems: An Introduction 8.2 Functions of a Flight Control System 8.3 Integrated Flight Control System 8.3.1 Guidance System: Interfacing to the Automatic Flight Control System 8.3.2 Flight Management System 8.4 Flight Control System Design 8.4.1 Block Diagram Algebra 8.4.2 Return Difference Equation 8.4.3 Laplace Transform 8.4.4 Stability of Uncontrolled and Controlled Systems 8.4.5 Routh's Tabular Method 8.4.6 Frequency Response 8.4.7 Bode Plots 8.4.8 Nyquist Plots 8.4.9 Stability in the Frequency Domain 8.4.10 Stability Margins: Gain and Phase Margins 8.4.11 Mapping Complex Functions and Nyquist Diagrams 8.4.12 Time Domain: State Variable Representation 8.4.13 Solution of the State Equations and the Controllability Condition 8.4.14 State-Space and Transfer Function Equivalence 8.4.15 Transformations of State Variables 8.4.16 Design of a Full-State Variable Feedback Control Law 8.4.17 Root Locus Method 8.4.18 Root Locus Principle 8.4.19 Root Locus Sketching Procedure 8.4.20 Producing a Root Locus Using MATLAB® 8.4.21 Application of the Root Locus Method: Unity Feedback with a PID Control Law 8.5 Optimal Control of Flight Dynamics 8.5.1 Compensating Full-State Feedback: Observers and Compensators 8.5.2 Observers for Controller Implementation 8.5.3 Observer Equations 8.5.4 Special Cases: Full- and First-Order Observers 8.5.5 Solving the Observer Equations 8.5.6 Luenberger Observer 8.5.7 Optimisation Performance Criteria 8.5.8 Good Handling Domains of Modal Response Parameters 8.5.9 Cooper–Harper Rating Scale 8.6 Application to the Design of Stability Augmentation Systems and Autopilots 8.6.1 Design of a Pitch Attitude Autopilot Using PID Feedback and the Root Locus Method 8.6.2 Example of Pitch Attitude Autopilot Design for the Lockheed F104 by the Root Locus Method 8.6.3 Example of Pitch Attitude Autopilot Design, Including a Stability Augmentation Inner Loop, by the Root Locus Method 8.6.4 Design of an Altitude Acquire-and-Hold Autopilot 8.6.5 Design of a Lateral Roll Attitude Autopilot 8.6.6 Design of a Lateral Yaw Damper 8.6.7 Design of a Lateral Heading Autopilot 8.6.8 Turn Coordination with Sideslip Suppression 8.6.9 Application of Optimal Control to Lateral Control Augmentation Design 8.7 Performance Assessment of a Command or Control Augmentation System 8.8 Linear Perturbation Dynamics Flight Control Law Design by Partial Dynamic Inversion 8.8.1 Design Example of a Longitudinal Autopilot Based on Partial Dynamic Inversion 8.9 Design of Controllers for Multi-Input Systems 8.9.1 Design Example of a Lateral Turn Coordination Using the Partial Inverse Dynamics Method 8.9.2 Design Example of the Simultaneously Operating Auto-Throttle and Pitch Attitude Autopilot 8.9.3 Two-Input Lateral Attitude Control Autopilot 8.10 Decoupling Control and Its Application: Longitudinal and Lateral Dynamics Decoupling Control 8.11 Full Aircraft Six-DOF Flight Controller Design by Dynamic Inversion 8.11.1 Control Law Synthesis 8.11.2 Example of Linear Control Law Synthesis by Partial Dynamic Inversion: Fully Propulsion-Controlled MD11 Aircraft Chapter Highlights Exercises Answers to Selected Exercises References Chapter 9 Piloted Simulation and Pilot Modelling 9.1 Introduction 9.2 Piloted Flight Simulation 9.2.1 Full Moving-Base Simulation: The Stewart Platform 9.2.2 Kinematics of Motion Systems 9.2.3 Principles of Motion Control 9.2.4 Motion Cueing Concepts 9.3 Principles of Human Pilot Physiological Modelling 9.3.1 Auricular and Ocular Sensors 9.4 Human Physiological Control Mechanisms 9.4.1 Crossover Model 9.4.2 Neal–Smith Criterion 9.4.3 Pilot-Induced Oscillations 9.4.4 PIO Categories 9.4.5 PIOs Classified Under Small Perturbation Modes 9.4.6 Optimal Control Models 9.4.7 Generic Human Pilot Modelling 9.4.8 Pilot–Vehicle Simulation 9.5 Spatial Awareness 9.5.1 Visual Displays 9.5.2 Animation and Visual Cues 9.5.3 Visual Illusions Chapter Highlights Exercises References Chapter 10 Flight Dynamics of Elastic Aircraft 10.1 Introduction 10.2 Flight Dynamics of Flexible Aircraft 10.3 Newton–Euler Equations of a Rigid Aircraft 10.4 Lagrangian Formulation 10.4.1 Generalised Coordinates and Holonomic Dynamic Systems 10.4.2 Generalised Velocities 10.4.3 Virtual Displacements and Virtual Work 10.4.4 Principle of Virtual Work 10.4.5 Euler–Lagrange Equations 10.4.6 Potential Energy and the Dissipation Function 10.4.7 Euler–Lagrange Equations of Motion in Quasi-Coordinates 10.4.8 Transformation to Centre of Mass Coordinates 10.4.9 Application of the Lagrangian Method to a Rigid Aircraft 10.5 Vibration of Elastic Structures in a Fluid Medium 10.5.1 Effects of Structural Flexibility in Aircraft Aeroelasticity 10.5.2 Wing Divergence 10.5.3 Control Reversal 10.5.4 Wing Flutter 10.5.5 Aerofoil Flutter Analysis 10.6 Unsteady Aerodynamics of an Aerofoil 10.7 Euler–Lagrange Formulation of Flexible Body Dynamics 10.8 Application to an Aircraft with a Flexible Wing Vibrating in Bending and Torsion 10.8.1 Longitudinal Small Perturbation Equations with Flexibility 10.8.2 Lateral Small Perturbation Equations with Flexibility 10.9 Kinetic and Potential Energies of the Whole Elastic Aircraft 10.9.1 Kinetic Energy 10.9.2 Simplifying the General Expression 10.9.3 Mean Axes 10.9.4 Kinetic Energy in Terms of Modal Amplitudes 10.9.5 Tisserand Frame 10.10 Euler–Lagrange Matrix Equations of a Flexible Body in Quasi-Coordinates 10.11 Slender Elastic Aircraft 10.12 Aircraft with a Flexible Flat Body Component 10.12.1 Elastic Large Aspect Ratio Flying Wing Model 10.12.2 Flexible Aircraft in Roll 10.13 Estimating the Aerodynamic Derivatives: Modified Strip Analysis Chapter Highlights Exercises Answers to Selected Exercises References Chapter 11 Dynamics and Control of Drones and Unmanned Aerial Vehicles 11.1 Introduction 11.2 Dynamics of a Generic Drone 11.3 Rigid Body Kinematics 11.3.1 Defining the Body Frame 11.3.2 Defining the Body Angular Velocity Components 11.4 Translational Dynamics 11.5 Attitude Dynamics 11.6 Attitude Kinematics 11.6.1 The Quaternion Representation of the Attitude 11.6.2 The Relations Between Quaternion Rates and Angular Velocities 11.7 Aerodynamic Forces 11.8 Propulsion-Based Control 11.9 Stability and Control 11.10 Automatic Flight Control 11.11 Autonomous Flight Control 11.12 The Quadrotor Drone 11.12.1 Dynamics of the Quadrotor Drone 11.12.2 Quadrotor Control Allocation 11.12.3 Quadrotor Control Strategies 11.12.4 PID Control of a Quadrotor 11.13 Optimal Controller Synthesis for Drones 11.14 Unconventional Multi-Rotor Drones 11.14.1 Quadrotors with Bi-Directional Motors 11.14.2 Quadcopters: Dynamics of the Quadcopter 11.14.3 Body Forces and Body Moments Acting on a Quadcopter 11.14.4 The Unsymmetrically Actuated Quadcopter 11.14.5 The Pentacopter 11.14.6 Equations of Motion of a Pentacopter 11.14.7 The Hexa-Rotor and the Hexa-Copter 11.14.8 Dynamics of a Hexa-Rotor Drone 11.14.9 The Basic Hexa-Rotor Configuration: Derivation of the Body Forces and Moments 11.14.10 Alternate Tri-Axial Multi-Rotor Configurations 11.14.11 The Hexa-Rotor Configuration with Two Rotors Tilted: The Hexa-Copter 11.14.12 A Hexa-Copter with Three Tilt-Controlled Rotors 11.14.13 Six DOFs Configuration: Derivation of the Body Forces and Moments 11.14.14 Control of a Fully Actuated Hexa-rotor Drone: Decoupling 11.14.15 The Octocopter and Over-Actuated Multi-Rotor Drones 11.14.16 Dynamics of an Octocopter Drone 11.14.17 Nonlinear and Linear Dynamic Modelling of Multi-Rotor Drones 11.14.18 H[sup(∞)] Optimal Control of an Octocopter Drone 11.14.19 Typical Simulation Example 11.15 Drones and Unmanned Aerial Vehicles with Aerodynamic Lifting Surfaces Chapter Highlights Exercises References Index