ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Flexible Robotics in Medicine: A Design Journey of Motion Generation Mechanisms and Biorobotic System Development

دانلود کتاب رباتیک انعطاف پذیر در پزشکی: سفر طراحی مکانیسم های تولید حرکت و توسعه سیستم بیوروباتیک

Flexible Robotics in Medicine: A Design Journey of Motion Generation Mechanisms and Biorobotic System Development

مشخصات کتاب

Flexible Robotics in Medicine: A Design Journey of Motion Generation Mechanisms and Biorobotic System Development

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 0128175958, 9780128175958 
ناشر: Academic Press 
سال نشر: 2020 
تعداد صفحات: 509 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 مگابایت 

قیمت کتاب (تومان) : 40,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Flexible Robotics in Medicine: A Design Journey of Motion Generation Mechanisms and Biorobotic System Development به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب رباتیک انعطاف پذیر در پزشکی: سفر طراحی مکانیسم های تولید حرکت و توسعه سیستم بیوروباتیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب رباتیک انعطاف پذیر در پزشکی: سفر طراحی مکانیسم های تولید حرکت و توسعه سیستم بیوروباتیک



رباتیک انعطاف‌پذیر در پزشکی: سفر طراحی مکانیسم‌های تولید حرکت و توسعه سیستم بیوروباتیک منبعی از دانش و نمونه‌های اولیه موفق در مورد ربات‌های انعطاف‌پذیر در پزشکی ارائه می‌کند. با توجه به استفاده فزاینده متخصصان در زمینه پزشکی از رباتیک در روش های پزشکی، بهبود دانش فعلی در مورد فن آوری های موجود حیاتی است. این کتاب پیشینه، الزامات پزشکی، اصول مهندسی زیست پزشکی، و تحقیقات جدید در مورد ربات های نرم، از جمله سیستم های رباتیک انعطاف پذیر عمومی، مشخصات طراحی، منطق طراحی، ساخت، آزمایش های تایید، محرک ها و حسگرها در سیستم های رباتیک پزشکی انعطاف پذیر را پوشش می دهد.

با ارائه چندین پروژه به عنوان نمونه، نویسندگان همچنین در مورد خط لوله توسعه یک سیستم روباتیک پزشکی، از جمله نقاط عطف مهم مانند مقررات مربوط، طبقه بندی دستگاه ها و استانداردهای پزشکی بحث می کنند.


توضیحاتی درمورد کتاب به خارجی

Flexible Robotics in Medicine: A Design Journey of Motion Generation Mechanisms and Biorobotic System Development provides a resource of knowledge and successful prototypes regarding flexible robots in medicine. With specialists in the medical field increasingly utilizing robotics in medical procedures, it is vital to improve current knowledge regarding technologies available. This book covers the background, medical requirements, biomedical engineering principles, and new research on soft robots, including general flexible robotic systems, design specifications, design rationale, fabrication, verification experiments, actuators and sensors in flexible medical robotic systems.

Presenting several projects as examples, the authors also discuss the pipeline to develop a medical robotic system, including important milestones such as involved regulations, device classifications and medical standards.



فهرست مطالب

Flexible Robotics in Medicine
Copyright
Contents
List of Contributors
Preface: A design journey of biorobotic motion generation mechanisms and flexible continuum system development
1 Slender snake-like endoscopic robots in surgery
	1.1 Introduction
	1.2 Snake-like robots for surgery
		1.2.1 Commercial products
		1.2.2 Typical mechanical design
			1.2.2.1 Tendon-driven mechanisms for surgical robots
			1.2.2.2 Motor-actuated articulated snake-like mechanism
		1.2.3 Novel design and platforms
	1.3 Modeling of snake-like surgical robots
		1.3.1 Kinematics
		1.3.2 Statics and dynamics
		1.3.3 Hysteresis and compensation
	1.4 Human–machine interaction
		1.4.1 Shape/force sensing
		1.4.2 Motion planning
		1.4.3 Control
			1.4.3.1 Controlling variables
			1.4.3.2 Controllers and their evolution
	1.5 Conclusion
	References
2 Prototyping soft origami quad-bellows robots from single-bellows characterization
	2.1 Introduction
	2.2 Literature review
		2.2.1 Soft robots and origami
		2.2.2 Actuation
		2.2.3 Colonoscopy and anatomical models
	2.3 Methodology
		2.3.1 Gait selection
			2.3.1.1 Snake’s rectilinear locomotion
			2.3.1.2 Snake’s concertina locomotion
		2.3.2 Bellows design
			2.3.2.1 Origami pattern
			2.3.2.2 Actuation method
		2.3.3 Material selection
		2.3.4 Colon phantom
	2.4 Results and discussion
		2.4.1 Actuation of the individual bellows unit
		2.4.2 Borescope through colon model components
		2.4.3 Future directions of study
	2.5 Conclusion
	Acknowledgment
	References
3 Cable-driven flexible endoscope utilizing diamond-shaped perforations: FlexDiamond
	3.1 Clinical background of nasopharyngeal carcinoma
		3.1.1 Diagnostic methods
		3.1.2 Unmet needs
		3.1.3 Summary of prior art
	3.2 Specifications and instrumentation
		3.2.1 User needs
		3.2.2 Design considerations for prototype specifications
			3.2.2.1 Anatomical variations and robot shape morphing
			3.2.2.2 Anatomical variations in terms of size
			3.2.2.3 Anatomical variations based on age and gender
			3.2.2.4 Estimation of the distance between a nasal inlet to the nasopharynx
		3.2.3 Approach
		3.2.4 Function of the prototype
	3.3 Prototype description
		3.3.1 Expected technical advantages
		3.3.2 Overall design
		3.3.3 Design components and design rationale
			3.3.3.1 Mechanical zooming segment
			3.3.3.2 Bending segment
			3.3.3.3 Materials selection
		3.3.4 Key performance targets
		3.3.5 Future prototype classification and comparisons
	3.4 Design verification
		3.4.1 Mechanical strength tests
			3.4.1.1 Tensile test for nylon thread (tendon)
			3.4.1.2 Tensile test for polyurethane and TangoBlack-VeroClear composite material
			3.4.1.3 Three-point bending test for diamond-cut design (static)
		3.4.2 Functionality test
			3.4.2.1 Bending capability test
			3.4.2.2 The functionality of the mechanical zooming segment
		3.4.3 Workspace visualization
		3.4.4 Finite element analysis
		3.4.5 Biocompatibility test
		3.4.6 Detailed summary of design verification tests and the associated acceptance criteria
	3.5 Design specifications, review, and benchmarking
		3.5.1 Clinical needs
		3.5.2 Metrics
		3.5.3 Needs-metrics matrix
		3.5.4 Metrics benchmarking
		3.5.5 Satisfaction benchmarking
		3.5.6 Target specification
		3.5.7 Present endoscopes and SWOT analysis
		3.5.8 Comparative advantages
		3.5.9 Failure mode analysis
		3.5.10 Other potential design conceptualization variations
	3.6 Patent analysis
		3.6.1 Expected FlexDiamond prototype: embodiments and envisioned claims
		3.6.2 Search strategy
		3.6.3 Analysis
	3.7 Conclusion
	Acknowledgment
	References
4 Flexible steerable manipulator utilizing complementary configuration of multiple routing grooves and ball joints for stab...
	4.1 Introduction
	4.2 Methods
		4.2.1 Proximal control system
		4.2.2 Extended broader concepts
	4.3 Design verification
		4.3.1 Biopsy sample volume
		4.3.2 Stability measurement
		4.3.3 Bending angle measurement
		4.3.4 Actuation time
		4.3.5 Design and intended use
			4.3.5.1 Easy manipulation around corners
			4.3.5.2 Stability of the prototype (tip, forceps)
			4.3.5.3 Strength of jaw (pull out)
			4.3.5.4 Strength of the distal tip
			4.3.5.5 Strength of forceps
			4.3.5.6 Accuracy of prototype
			4.3.5.7 Total bending angle and individual bending segment
		4.3.6 Metrics benchmarking
	4.4 Patentability analysis
		4.4.1 R1: search by keywords
		4.4.2 Relevant patents for analysis
	4.5 Conclusion and future developments
	References
5 Modular origami joint operator to create bendable motions with multiple radii
	5.1 Introduction
		5.1.1 Overview of tracheostomy
		5.1.2 Unmet needs
			5.1.2.1 Complications of percutaneous tracheostomy
			5.1.2.2 Current measures
		5.1.3 Transoral endoscopes
		5.1.4 Summary of prior art in endoscopic manipulators
	5.2 Design and prototyping
		5.2.1 Vacuum-actuated prototypes
			5.2.1.1 Pneumatic casing
		5.2.2 Tendon-actuated prototypes
		5.2.3 Hinge design
		5.2.4 Description of prototype
			5.2.4.1 Summary of the device
			5.2.4.2 Preferred embodiments
			5.2.4.3 Modifications of the preferred embodiments
	5.3 Design rationale and specifications
		5.3.1 Key performance targets
		5.3.2 Needs–metrics mapping matrix
			5.3.2.1 Table of user needs
			5.3.2.2 Metrics table
			5.3.2.3 Needs–metrics matrix
			5.3.2.4 Metrics benchmarking
			5.3.2.5 Satisfaction benchmarking
			5.3.2.6 Target specification
	5.4 Design verification and validation
		5.4.1 Setup
		5.4.2 Device verification
			5.4.2.1 Pneumatics
				5.4.2.1.1 Bending motion
					Effect of voltage on pressure
					Effect of pressure on bending angle
				5.4.2.1.2 Stability
					Effect of loading on pressure
					Effect of disturbance force on lateral displacement
			5.4.2.2 Tendon approach
				5.4.2.2.1 Effect of pulling/loading on bending angle
				5.4.2.2.2 Stability
					Effect of disturbance force on lateral displacement
					Effect of disturbance force on longitudinal displacement
					Dynamic stability in lateral direction
					Dynamic stability in longitudinal direction
				5.4.2.2.3 Functionality of force generation and positioning accuracy
					Effect of pulling on generating tip force
					Targeting accuracy
					Improvement
		5.4.3 Device validation
			5.4.3.1 Repeatability
			5.4.3.2 Absolute deviation
		5.4.4 Design review
			5.4.4.1 Review results
			5.4.4.2 Feasibility
	5.5 Further patents benchmarking and remarks
		5.5.1 Search strategy
		5.5.2 Relevant patents for analysis
		5.5.3 Modular origami joint operator claims
		5.5.4 Remarks
	5.6 Conclusion remarks and future work
	Acknowledgment
	References
6 Handheld flexible robot with concentric tubes aiming for intraocular procedures
	6.1 Introduction
		6.1.1 Intraocular surgery
			6.1.1.1 Light pipes
			6.1.1.2 Chandelier lighting
			6.1.1.3 Infusion cannula
			6.1.1.4 Vitrector
		6.1.2 Robotic ocular surgery
	6.2 Concentric tube robots
		6.2.1 Manually actuated
		6.2.2 Motor actuated
		6.2.3 Design considerations
			6.2.3.1 Concentric tube stiffness
		6.2.4 Challenges in intraocular concentric tube robot design
			6.2.4.1 Dimensions of current concentric tube robots
			6.2.4.2 Tube specifications
			6.2.4.3 Portability
	6.3 Intraocular concentric tube robot prototype design
		6.3.1 Workspace requirements
		6.3.2 Tubes
		6.3.3 Materials of tubes and parts
		6.3.4 Tube motion driving system
		6.3.5 Casing
	6.4 Kinematics and motion control interface
	6.5 Evaluation of prototype
	6.6 Conclusion
	References
7 Tendon routing and anchoring for cable-driven single-port surgical manipulators with spring backbones and luminal constraints
	7.1 Introduction
	7.2 Explored concepts for actuation
		7.2.1 Cable-driven actuation
		7.2.2 Pneumatic/fluidic actuators
		7.2.3 Smart material actuation
		7.2.4 Design considerations and evaluating actuation methods
	7.3 Constructing the flexible backbone
		7.3.1 Tendon-driven spring backbones and tendon fixation
		7.3.2 Anchors to guide the tendons
			7.3.2.1 Lashing technique
			7.3.2.2 Guiding technique
			7.3.2.3 Routing technique
			7.3.2.4 Hollow tube guides
			7.3.2.5 Aluminum sheet guides
	7.4 Integration with surgical tools
		7.4.1 Forceps
		7.4.2 Electrocautery
	7.5 Prototype architecture and testing
		7.5.1 Overall architecture
		7.5.2 Implementing the master-slave teleoperation
			7.5.2.1 Master control system
			7.5.2.2 Motors and control electronics
		7.5.3 Prototype testing
	7.6 Attempts at variable stiffness mechanisms
		7.6.1 Design thinking framework
		7.6.2 Thermal phase-change materials: wax
		7.6.3 Layer jamming mechanism
		7.6.4 Remarks
	7.7 Conclusion
	Acknowledgments
	References
8 Compliant bending tubular mechanisms with variable groove patterns for flexible robotic drilling delivery
	8.1 Introduction
		8.1.1 Background
		8.1.2 Objective
	8.2 Literature review
		8.2.1 Robotic system
		8.2.2 Joint types for bending
		8.2.3 Related works of manipulators
			8.2.3.1 Snake-like slave-side robots
			8.2.3.2 Telescoping precurved superelastic tubes
	8.3 Bending tube mechanism with groove cutting designs
		8.3.1 Bending tube design
		8.3.2 Simulations
			8.3.2.1 Nitinol tube cutting fishbone-like design 1
			8.3.2.2 Simulation result using maximum yield strength
			8.3.2.3 Simulation result using minimum yield strength
		8.3.3 Preliminary experiments
	8.4 Bending tube mechanism with modular sections
		8.4.1 Goldfinger retractor inspiration
		8.4.2 Prototyping
			8.4.2.1 Driven platform
			8.4.2.2 Manipulator and flexible drill
		8.4.3 Experiment
			8.4.3.1 Silicone rubber
			8.4.3.2 Pig’s ear
			8.4.3.3 Problems faced during the experiment
	8.5 Other trials and errors
		8.5.1 Compression and tension springs
		8.5.2 Polyimide medical tubing
		8.5.3 Three-dimensional printed prototype using Ninja Flex
	8.6 Conclusion
	Acknowledgment
	References
	Further reading
9 Tendon-driven linkage for steerable guide of flexible bending manipulation
	9.1 Introduction
	9.2 Mechanical design of the flexible robot
	9.3 Experimental procedure and results
		9.3.1 Experimental setup
		9.3.2 Experimental procedure
		9.3.3 Experimental results
		9.3.4 Discussion
			9.3.4.1 Bendable drill guide
			9.3.4.2 Possible force feedback for considerations
	9.4 Conclusions and future work
	Acknowledgment
	References
10 Soft-bodied flexible bending mechanism with silent shape memory alloys aiming for robotic endoscopy
	10.1 Introduction
	10.2 Materials and methods
		10.2.1 Shape memory alloy
		10.2.2 Design of the tentacle
		10.2.3 Silicone elastomer
		10.2.4 Fabrication of the tentacle
		10.2.5 Control setup
	10.3 Results
		10.3.1 Bending performance of the tentacle
	10.4 Discussions
		10.4.1 Comparison of the tentacle with the products in the market
	10.5 Conclusion
		10.5.1 Future works
	References
11 Comparative mechanical analysis for flexible bending manipulators with quad-tendon antagonistic pairs
	11.1 Introduction
	11.2 Related work
	11.3 Overview of the mechanism of paired tendon-driven manipulator
		11.3.1 General design and kinematic model
		11.3.2 Overview of different designs
			11.3.2.1 One-piece design
			11.3.2.2 Disk-tube design
			11.3.2.3 Disk-wire design
	11.4 Simulation of different designs using the finite element method
		11.4.1 Problem geometry
		11.4.2 Load cases
		11.4.3 Mesh
	11.5 Analysis of difference among different designs
		11.5.1 Force–deformation analysis
		11.5.2 Deformation-shear stress analysis
		11.5.3 Different number of disks in disk-wire design analysis
		11.5.4 The position of guiding hole in disk-wire design
	11.6 Prototype and experiment
	11.7 Conclusion and recommendation for the future study
	References
12 Flexible robotic platform with multiple-bending tendon-driven mechanism
	12.1 Introduction
	12.2 Design principles and qualifications
		12.2.1 Modular design approach
			12.2.1.1 Flexible manipulator module
			12.2.1.2 Motor unit module
			12.2.1.3 Electronics module
		12.2.2 Design qualification
			12.2.2.1 Bending angle determination
			12.2.2.2 Pulling length and velocity of stepper motors
			12.2.2.3 Denavit–Hartenberg transformation matrix
	12.3 Prototype fabrication
		12.3.1 Flexible manipulator module
		12.3.2 Motor unit module
		12.3.3 Electronics module
	12.4 Prototype analysis and characteristic study
		12.4.1 Flexible manipulator prototype workspace
		12.4.2 Flexible manipulator prototype repeatability
		12.4.3 Weight-bearing test
		12.4.4 Obstacles avoidance test
		12.4.5 Practical application via cadaveric testing
	12.5 Discussion
		12.5.1 Comparison with existing flexible manipulator platforms
		12.5.2 Biocompatible materials
		12.5.3 Precision positioning
		12.5.4 Robust testing for further development
	12.6 Conclusion
	Acknowledgment
	References
13 Design evolution of a flexible robotic bending end-effector for transluminal explorations
	13.1 Introduction
	13.2 Prior art and design criteria
	13.3 Prototype overall assembly and architecture
		13.3.1 Design process
		13.3.2 Final prototype design
	13.4 Design components and rationale
		13.4.1 Camera holder
		13.4.2 Main conduit
		13.4.3 Connector
		13.4.4 Material selection
	13.5 Motion specifications and transmission instrumentation
		13.5.1 Rotational motion to tip bending
		13.5.2 Translational motion
		13.5.3 Electronic components
		13.5.4 Joystick control
		13.5.5 Other prototype factors
	13.6 Design verification
		13.6.1 Design parameter verification
		13.6.2 Mechanical analysis of design
	13.7 Design review, specification, and benchmarking
		13.7.1 Main difference in the structure of endoscope components
		13.7.2 Competitive advantages
		13.7.3 Design failure mode and effect analysis
	13.8 Conclusion
	References
	Further reading
14 Force sensing in compact concentric tube mechanism with optical fibers
	14.1 Introduction
	14.2 Literature review
		14.2.1 Review of concentric tube robot design
			14.2.1.1 Actuation of concentric tube robots
			14.2.1.2 Tube design considerations
		14.2.2 Fiber Bragg gratings for tactile feedback
			14.2.2.1 Working principle
	14.3 Concentric tube robot design
		14.3.1 Tube configuration
		14.3.2 Tube driving system
		14.3.3 DC motor gear assembly
	14.4 Kinematic model
	14.5 Control system
		14.5.1 Motor driver
		14.5.2 Proportional–integral–derivative tuning
	14.6 Force sensing tip
	14.7 Experiment
	14.8 Conclusion and future work
	Acknowledgment
	References
15 Electromechanical characterization of magnetic responsive and conductive soft polymer actuators
	15.1 Introduction
	15.2 Experimental setup
		15.2.1 Preparation of PEDOT:PSS/xylitol/Fe3O4 composite films and coated cotton thread
		15.2.2 Preparation of IL/PVDF-HFP/PEDOT:PSS/xylitol bending actuator
		15.2.3 Characterization of PEDOT:PSS/xylitol/Fe3O4 composite films
		15.2.4 Characterization of IL/PVDF-HFP/PEDOT:PSS/xylitol bending actuator
	15.3 Results and discussion
		15.3.1 Electrical properties of PEDOT:PSS/xylitol/Fe3O4 films
		15.3.2 Mechanical properties of PEDOT:PSS/xylitol/Fe3O4 films
		15.3.3 Magnetic properties of PEDOT:PSS/xylitol/Fe3O4 films
		15.3.4 PEDOT:PSS/xylitol/Fe3O4-coated cotton thread
		15.3.5 Electrical properties of IL/PVDF-HFP/PEDOT:PSS/xylitol
		15.3.6 Mechanical properties of IL/PVDF-HFP/PEDOT:PSS/xylitol bending actuator
	15.4 Conclusion
	References
16 Robotic transluminal Pan-and-Tilt Scope
	16.1 Introduction
		16.1.1 Unmet needs
		16.1.2 Approaches addressing the needs
	16.2 Device design
		16.2.1 Design requirement and aims
		16.2.2 Design overview
		16.2.3 Orientation actuation components and rationale
			16.2.3.1 Tilting mechanism
			16.2.3.2 Rotation mechanism
	16.3 Design verification
		16.3.1 Deflection
		16.3.2 Viewing angles
	16.4 Benchmarking with needs-metrics matrix
		16.4.1 Needs table
		16.4.2 Metrics table
		16.4.3 Needs-metrics matrix
		16.4.4 Metrics benchmarking
		16.4.5 Satisfaction benchmarking
		16.4.6 Target specification
	16.5 Detailed analysis of relevant patents
		16.5.1 US 20140275785 A1 apparatus for wiping angled window of the endoscope
		16.5.2 US 7713189 B2 video endoscope with a rotatable video camera
			16.5.2.1 Key claims
			16.5.2.2 Assessment
		16.5.3 US6464631 B1 endoscope with pannable camera
			16.5.3.1 Key claims
			16.5.3.2 Assessment
		16.5.4 US20140012080 A1 endoscopic camera and the endoscopic device
			16.5.4.1 Key claims
			16.5.4.2 Assessment
		16.5.5 US 20140249369 A1 imaging apparatus and the rigid endoscope
			16.5.5.1 Key claims
			16.5.5.2 Assessment
		16.5.6 US 20130060087 A1 rigid scope apparatus
			16.5.6.1 Key claims
			16.5.6.2 Assessment
	16.6 Design review
		16.6.1 The envisioned device indication of use
		16.6.2 The envisioned procedure of using Pan-and-Tilt Scope
		16.6.3 Failure mode analysis
	16.7 Conclusion and future developments
	Acknowledgment
	References
17 Single-port multichannel multi-degree-of-freedom robot with variable stiffness for natural orifice transluminal endoscop...
	17.1 Introduction
	17.2 Robotic endoscopy system
		17.2.1 Clinical requirements
		17.2.2 System overview
		17.2.3 The compliant arm with variable stiffness
		17.2.4 The flexible wrist joint
		17.2.5 The forceps
		17.2.6 The actuator
		17.2.7 Surgery procedure
	17.3 Experiment and results
	17.4 Conclusion and discussion
	Acknowledgment
	References
18 EndoGoose: a flexible and steerable endoscopic forceps with actively pose-retaining bendable sections
	18.1 Introduction
	18.2 Methods
		18.2.1 Overall design
		18.2.2 Actively bendable and shape-retaining section
		18.2.3 Control box
	18.3 Design parameter verification
		18.3.1 Design review of satisfying design acceptance criteria
		18.3.2 Design failure mode and effect analysis
	18.4 Analysis of needs and metrics
		18.4.1 Design metrics
		18.4.2 Metrics and satisfaction benchmarking
		18.4.3 Target specifications
	18.5 Conclusion
	Acknowledgment
	References
19 Flexible drill manipulator utilizing different rolling sliding joints for transoral drilling through the tracheal tissue
	19.1 Clinical needs
		19.1.1 Laryngeal cancer
		19.1.2 Bronchopulmonary dysplasia
	19.2 Limitations of the current devices
		19.2.1 Percutaneous tracheostomy
		19.2.2 Current instruments
			19.2.2.1 Blue Rhino dilator
	19.3 Goldrill device: flexible endotracheal drill
		19.3.1 Drilling needle
		19.3.2 Handle part
		19.3.3 Bending segment
		19.3.4 Cut design selection in terms of interface sliding and detachment
		19.3.5 Wire placement and cross-sectional shape selection
		19.3.6 Tip designs
	19.4 Needs matrix and technical advantages
		19.4.1 Flexible manipulation within the trachea
		19.4.2 Stability of drilling tip
		19.4.3 Drilling force on the trachea
		19.4.4 Stability of the bending segment
		19.4.5 Strength of tendon wires
	19.5 Evolution of prototype versions
	19.6 Design verification tests
		19.6.1 INSTRON tests
			19.6.1.1 The tensile stress of tendon wires
			19.6.1.2 Cyclic deformation of tendon wires
			19.6.1.3 Compression tests of polylactic acid material
		19.6.2 Force and vibration tests with OptoForce
			19.6.2.1 Segment bending
			19.6.2.2 Drill tip force
			19.6.2.3 Drill tip vibration
		19.6.3 Animal cartilage
		19.6.4 Comparison with gold finger
	19.7 Future developments
	19.8 Supplementary summary
	Acknowledgment
	References
20 Thermo-responsive hydrogel-based circular valve embedded with shape-memory actuators
	20.1 Introduction
	20.2 Materials and methods
		20.2.1 Thermo-responsive hydrogel valve
			20.2.1.1 Three-dimensional printed mold
			20.2.1.2 Hydrogel
			20.2.1.3 Fabrication
		20.2.2 Shape memory alloy–actuated hydrogel valve
			20.2.2.1 Three-dimensional printed mold
			20.2.2.2 Hydrogel
			20.2.2.3 Shape memory alloy
			20.2.2.4 Fabrication
	20.3 Results
		20.3.1 Performance of the thermo-responsive hydrogel valve
		20.3.2 Performance of the shape memory alloy–actuated hydrogel valve
			20.3.2.1 Shape memory alloy wire-based shape memory alloy–actuated hydrogel valve
			20.3.2.2 Shape memory alloy spring-based shape memory alloy–actuated hydrogel valve
	20.4 Discussion
	20.5 Conclusion and future work
	References
21 OmniFlex: omnidirectional flexible hand-held endoscopic manipulator with spheroidal joint
	21.1 Introduction
		21.1.1 Nasopharyngeal carcinoma: origin and anatomy
		21.1.2 Clinical significance
		21.1.3 Endoscopic manipulators
		21.1.4 The objective of the present study
	21.2 System design and fabrication
	21.3 Key features
	21.4 Benchmarking
	21.5 Design verification tests
		21.5.1 Precision test
		21.5.2 Bend test
		21.5.3 Angle of curvature test
		21.5.4 Biopsy test
	21.6 Conclusion
	References
Index




نظرات کاربران