دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Michael J. Fogarty, Jeremy S. Collie سری: ISBN (شابک) : 2019948498, 0198768931 ناشر: Oxford University Press سال نشر: 2020 تعداد صفحات: 336 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 59 مگابایت
در صورت تبدیل فایل کتاب Fishery Ecosystem Dynamics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دینامیک اکوسیستم شیلات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
شیلات یک خدمات اکوسیستمی بسیار مهم را با ارائه تقریباً 20 درصد پروتئین حیوانی روزانه به بیش از سه میلیارد نفر ارائه می دهد. با این حال، یک سوم از ذخایر ماهی جهان در حال حاضر در سطوح ناپایدار برداشت می شود. خواستار اتخاذ رویکردهای جامع تر است به مدیریتی که اصول گستردهتر اکوسیستم را در بر میگیرد، اکنون برای مقابله با این چالش در سراسر جهان به عمل تبدیل میشود. انتقال از مفهوم به اجرا با نیاز به ایجاد و ارزیابی بیشتر چارچوب تحلیلی برای شیلات مبتنی بر اکوسیستم همراه است. مدیریت (EBFM). هدف این کتاب درسی جدید، ارائه مقدمه ای بر این موضوع برای نسل بعدی دانشمندانی است که این کار را ادامه خواهند داد، تا ارتباطات عمیق و اغلب نادیده گرفته شده بین بوم شناسی پایه و علم شیلات را روشن کند و کشف کند پیامدهای این پیوندها در تدوین استراتژی های مدیریت برای قرن 21 دینامیک اکوسیستم شیلات برای دانشجویان مقطع تحصیلات تکمیلی و همچنین محققان دانشگاهی و متخصصان (اعم از دولتی و غیردولتی) در زمینههای بومشناسی و مدیریت شیلات مفید خواهد بود.
Fisheries supply a critically important ecosystem service by providing over three billion people with nearly 20% of their daily animal protein intake. Yet one third of the world's fish stocks are currently harvested at unsustainable levels. Calls for the adoption of more holistic approaches to management that incorporate broader ecosystem principles are now being translated into action worldwide to meet this challenge. The transition from concept to implementation is accompanied by the need to further establish and evaluate the analytical framework for Ecosystem-Based Fishery Management (EBFM). The objectives of this novel textbook are to provide an introduction to this topic for the next generation of scientists who will carry on this work, to illuminate the deep and often underappreciated connections between basic ecology and fishery science, and to explore the implications of these linkages in formulating management strategies for the 21st century. Fishery Ecosystem Dynamics will be of great use to graduate level students as well as academic researchers and professionals (both governmental and NGO) in the fields of fisheries ecology and management.
Cover Fishery Ecosystem Dynamics Copyright Preface About this Book Acknowledgments About the Authors Contents Chapter 1: Introduction 1.1 Overview 1.1.1 Historical perspectives 1.1.2 Scientific developments 1.2 Process and pattern in fishery ecosystems 1.3 Confronting complexity 1.4 Summary Additional reading Part I: Ecological Models: An Overview Chapter 2: Density-Independent Population Growth 2.1 Introduction 2.2 Simple population models 2.2.1 Continuous-time model 2.2.2 Discrete-time model 2.3 Age- and stage-structured models 2.3.1 Age-structured model 2.3.1.1 Sensitivities and elasticities of matrix models 2.3.1.2 Stage-structured models 2.4 Summary Additional reading Chapter 3: Density-Dependent Population Growth 3.1 Introduction 3.2 Compensation in simple population models 3.2.1 Continuous-time models 3.2.1.1 The generalized logistic model 3.2.2 Multiple equilibria 3.2.2.1 Depensation 3.2.2.2 Alternative stable states 3.2.3 Discrete-time models 3.2.3.1 Complex dynamics 3.3 Time-delay models 3.3.1 Continuous-time models 3.3.2 Discrete-time models 3.4 Matrix models 3.4.1 Age-structured models 3.4.2 Stage-structured models 3.5 Summary Additional reading Chapter 4: Interspecific Interactions I: Predation and Parasitism 4.1 Introduction 4.2 Predation 4.2.1 Density-independent models in continuous time 4.2.2 Density-dependent models in continuous time 4.2.3 Refugia 4.2.3.1 The foraging arena 4.2.4 The functional feeding response 4.2.4.1 Implications for stability 4.2.4.2 Environmental effects 4.2.5 Predator dependence 4.2.6 Discrete-time models 4.2.6.1 Density-independent models 4.2.6.2 Prey density dependence 4.3 Parasitism and disease 4.3.1 Models for microparasites 4.3.2 Models for macroparasites 4.3.3 Epidemiological models 4.4 Summary Additional reading Chapter 5: Interspecific Interactions II: Competition and Mutualism 5.1 Introduction 5.2 Competition 5.2.1 Competition and the niche 5.2.1.1 Niche metrics 5.2.2 Experimental evidence for competition 5.2.2.1 Species removal experiments 5.2.2.2 Species addition “experiments” 5.2.2.3 Estimating interaction strength 5.2.3 Models of competition in continuous time 5.2.3.1 Non-linear isoclines 5.2.4 Models of competition in discrete time 5.2.5 Model-based estimation of competition coefficients 5.2.6 Altering competitive outcomes 5.2.7 The competitive production principle 5.3 Mutualism 5.3.1 Continuous-time models 5.3.2 Discrete-time models 5.4 Summary Additional reading Chapter 6: Community Dynamics 6.1 Introduction 6.2 Some attributes of communities 6.2.1 Species diversity 6.2.2 Keystone species and trophic cascades 6.2.3 Guilds and functional groups 6.2.4 Community compensation 6.2.5 Stability and complexity 6.3 Models of community dynamics 6.3.1 Continuous-time models 6.3.1.1 Intraguild predation 6.3.1.2 Competition-predation 6.3.1.3 Non-linear predation 6.3.2 Discrete-time models 6.3.2.1 Multispecies delay–difference models 6.4 Complex dynamics 6.5 Size-spectrum models 6.6 Qualitative modeling approaches 6.7 Summary Additional reading Chapter 7: Spatial Processes 7.1 Introduction 7.1.1 Patterns of distribution and abundance 7.2 Spatial distribution of single populations 7.2.1 Measures of distribution and dispersion 7.2.1.1 Area occupied 7.2.1.2 Lloyd’s index 7.2.1.3 Lorenz curves 7.2.1.4 Center of gravity 7.2.1.5 Geographical spread 7.2.1.6 Kernel density estimators 7.2.2 Climate and distribution 7.3 Models of movement and dispersal 7.4 Spatial population models 7.4.1 Models in continuous time and space 7.4.1.1 The basin model 7.4.2 Models in continuous time and discrete space 7.4.2.1 Metapopulation models 7.4.2.2 Spatially explicit production models 7.4.3 Models in discrete time and space 7.4.3.1 Delay–difference model 7.4.3.2 Full age-structured models 7.5 Summary Additional reading Part II: Ecological Production Chapter 8: Production at the Individual Level 8.1 Introduction 8.2 Energy budgets for individual organisms 8.3 Growth 8.3.1 Growth in length 8.3.2 Seasonal growth 8.3.3 Growth models in discrete time 8.3.3.1 Discontinuous growth 8.4 Reproductive processes 8.4.1 Partitioning somatic and reproductive growth 8.5 Temperature-dependent growth 8.5.1 Physiological time units 8.6 Full bioenergetic models 8.6.1 Ingestion 8.6.2 Respiration 8.6.3 Egestion and excretion 8.6.4 Energy density of predators and prey 8.6.5 Yellow perch in Lake Erie 8.7 Metabolic ecology 8.8 Summary Additional reading Chapter 9: Production at the Cohort and Population Levels 9.1 Introduction 9.1.1 Compensation and regulation in aquatic populations 9.2 Cohort production 9.2.1 Growth 9.2.2 Mortality 9.2.2.1 Predation mortality 9.2.2.2 Parasitism/Disease 9.2.2.3 Other mortality 9.2.3 Estimating cohort production 9.3 Population production 9.3.1 Deterministic recruitment models 9.3.1.1 Null model 9.3.1.2 Intra-cohort competition 9.3.1.3 Cannibalism by adults 9.3.1.4 Size-dependent processes 9.3.1.5 Compensatory reproductive output 9.3.2 Recruitment variability 9.3.2.1 Recruitment models with environmental covariates 9.3.2.2 Stochastic recruitment models 9.4 Summary Additional reading Chapter10: Production at the Ecosystem Level 10.1 Introduction 10.2 Food webs 10.3 Energy flow and utilization 10.4 Linear network models 10.4.1 Bottom-up calculations 10.4.2 Top-down calculations 10.5 Biogeochemical models 10.5.1 Lower trophic level models 10.5.2 End-to-end models 10.6 Biomass spectra 10.7 Dynamic ecosystem models 10.8 Summary Additional reading Part III: Harvesting Models and Strategies Chapter 11: Harvesting at the Cohort and Population Levels 11.1 Introduction 11.1.1 Humans as predators 11.2 Harvesting at the cohort level 11.2.1 Yield-per-recruit 11.2.1.1 Continuous-time model 11.2.1.2 Discrete-time model 11.2.2 Egg production and spawning biomass-per-recruit 11.3 Biomass dynamic models 11.3.1 Continuous-time models 11.3.1.1 Linear harvest functions 11.3.1.2 Non-linear harvesting 11.3.1.3 Depensatory production 11.3.2 Discrete-time models 11.3.2.1 Biomass dynamic models 11.4 Delay–difference models 11.4.1 Complex dynamics 11.5 Full age-structured models 11.6 Harvesting in randomly varying environments 11.6.1 Discrete-time models 11.6.2 Low-frequency variation and climate change 11.7 Summary Additional reading Chapter 12: Harvesting at the Community Level 12.1 Introduction 12.2 Technical interactions in mixed-species fisheries 12.2.1 Mixed-species cohort models 12.2.2 Mixed species biomass dynamic models 12.2.3 Identifying vulnerable species 12.2.3.1 Productivity-susceptibility analysis 12.2.3.2 Eventual threat index 12.3 Aggregate biomass dynamic models 12.4 Multispecies biomass dynamic models 12.4.1 Continuous-time models 12.4.1.1 Linear interaction terms 12.4.1.2 Non-linear predation terms 12.4.2 Discrete-time models 12.4.2.1 Multispecies production models 12.4.2.2 Multispecies delay–difference models 12.4.2.3 Functional group models 12.5 Complex dynamics 12.6 Harvesting in random environments 12.7 Size- and age-structured multispecies models 12.7.1 Predation module 12.8 Multispecies assessment models 12.8.1 Multispecies virtual population analysis 12.8.2 Multispecies statistical catch-at-age analysis 12.9 Multispecies process models 12.10 Multispecies biologicalreference points 12.11 Summary Additional reading Chapter 13: Harvesting at the Ecosystem Level 13.1 Introduction 13.2 Fishery ecosystem production 13.2.1 Simple food chain models 13.3 Network models for exploited ecosystems 13.3.1 Mass-balance models 13.3.2 Ecosim 13.4 Size spectra 13.5 Habitat impacts andcarrying capacity 13.5.1 Effects on productivity and yield 13.5.2 By-catch and impacts on protected species 13.5.2.1 Protected species 13.6 Alternative ecosystem states 13.7 Conceptual and qualitative models 13.8 Summary Additional reading Chapter 14: Empirical Dynamic Modeling 14.1 Introduction 14.2 Core elements of the approach 14.2.1 State-space reconstruction 14.2.2 State-dependence 14.3 Multivariate analysis 14.3.1 Causality and convergent cross-mapping 14.4 Assessing species interaction strength 14.5 Forecasting 14.6 Complexity in social-ecological data 14.7 Summary Additional reading Chapter 15: Toward Ecosystem-Based Fisheries Management 15.1 Introduction 15.2 Place-based management 15.2.1 Delineating the ecosystem 15.2.2 Spatial management strategies 15.2.2.1 Single-species models 15.2.2.2 Habitat and biodiversity 15.2.2.3 Interspecific interactions 15.2.2.4 Priority areas for APAs 15.3 Maintaining ecosystem structure and function 15.3.1 Concepts of balance in fishery ecosystems 15.3.1.1 Trophic balance 15.3.1.2 Balanced harvest 15.4 Defining overfishing in an ecosystem context 15.4.1 Community-level reference points 15.4.2 Ecosystem-level reference points 15.4.3 System-level yield 15.5 Management strategy evaluation 15.6 Summary Additional reading Bibliography Index