ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Finite Element Analysis and Design of Steel and Steel–Concrete Composite Bridges

دانلود کتاب تجزیه و تحلیل المان محدود و طراحی پل های کامپوزیتی فولاد و فولاد-بتن

Finite Element Analysis and Design of Steel and Steel–Concrete Composite Bridges

مشخصات کتاب

Finite Element Analysis and Design of Steel and Steel–Concrete Composite Bridges

ویرایش: [2 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 0443189951, 9780443189951 
ناشر: Butterworth-Heinemann 
سال نشر: 2023 
تعداد صفحات: 720
[722] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 34 Mb 

قیمت کتاب (تومان) : 53,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Finite Element Analysis and Design of Steel and Steel–Concrete Composite Bridges به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تجزیه و تحلیل المان محدود و طراحی پل های کامپوزیتی فولاد و فولاد-بتن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تجزیه و تحلیل المان محدود و طراحی پل های کامپوزیتی فولاد و فولاد-بتن




توضیحاتی درمورد کتاب به خارجی

Finite Element Analysis and Design of Steel and Steel-Concrete Composite Bridges, Second Edition provides structural engineers and researchers with detailed modeling techniques for creating robust design models. The book\'s chapters cover various forms of modern steel and steel-concrete composite bridges as well as current design codes (American, British and Eurocodes). Other chapters address: nonlinear material behavior of bridge components, applied loads and stability of steel and steel-concrete composite bridges, and design of steel and steel-concrete composite bridge components. The book\'s final chapter focuses on finite element analysis and design of steel-concrete composite bridges with profiled steel sheeting. The book will be a valuable reference source on the issues, problems, challenges and questions that should be asked when designing a composite highway steel bridge with profiled steel sheeting and finite element modeling of the bridge components.



فهرست مطالب

Front Cover
Finite Element Analysis and Design of Steel and Steel–Concrete Composite Bridges
Copyright
Contents
Chapter 1: Introduction
	1.1. General remarks
	1.2. Types of steel and steel-concrete composite bridges
	1.3. Literature review of steel and steel-concrete composite bridges
		1.3.1. General remarks
		1.3.2. Recent investigations on steel bridges
		1.3.3. Recent investigations on steel-concrete composite bridges
	1.4. Finite element modeling of steel and steel-concrete composite bridges
	1.5. Current design codes of steel and steel-concrete composite bridges
	References
Chapter 2: Nonlinear material behavior of the bridge components
	2.1. General remarks
	2.2. Nonlinear material properties of structural steel
		2.2.1. General
		2.2.2. Steel stresses
		2.2.3. Ductility
		2.2.4. Fracture toughness
		2.2.5. Weldability
		2.2.6. Weather resistance
		2.2.7. Residual stresses
	2.3. Nonlinear material properties of concrete
		2.3.1. General
		2.3.2. Concrete stresses
		2.3.3. Creep and shrinkage
		2.3.4. Stress-strain relation of concrete for nonlinear structural analysis
		2.3.5. Stress-strain relations for the design of cross-sections
		2.3.6. Flexural tensile strength
		2.3.7. Confined concrete
	2.4. Nonlinear material properties of reinforcement bars
		2.4.1. General
		2.4.2. Properties
	2.5. Nonlinear material properties of prestressing tendons
		2.5.1. General
		2.5.2. Properties
	2.6. Nonlinear behavior of shear connection
		2.6.1. General
		2.6.2. Shear connectors
		2.6.3. Complete and partial shear concoction
		2.6.4. Main investigations on shear connection in composite beams with solid slabs
		2.6.5. Main investigations on shear connection in composite beams with profiled steel decking
		2.6.6. Main investigations on shear connection in composite beams with prestressed hollow core concrete slabs
		2.6.7. Main investigations on numerical modeling of shear connection
		2.6.8. Main investigations on numerical modeling of composite girders
	References
Chapter 3: Applied loads and stability of steel and steel-concrete composite bridges
	3.1. General remarks
	3.2. Dead loads of steel and steel-concrete composite bridges
		3.2.1. Dead loads of railway steel bridges
		3.2.2. Dead loads of highway steel and steel-concrete composite bridges
	3.3. Live loads on steel and steel-concrete composite bridges
		3.3.1. Live loads for railway steel bridges
		3.3.2. Live loads for highway steel and steel-concrete composite bridges
	3.4. Horizontal forces on steel and steel-concrete composite bridges
		3.4.1. General
		3.4.2. Horizontal forces on railway steel bridges
			3.4.2.1. Centrifugal forces
			3.4.2.2. Nosing force
			3.4.2.3. Traction and braking forces
			3.4.2.4. Wind forces
		3.4.3. Horizontal forces on highway steel and steel-concrete composite bridges
			3.4.3.1. Braking and acceleration forces
			3.4.3.2. Centrifugal forces
	3.5. Other loads on steel and steel-concrete composite bridges
		3.5.1. Fatigue loads
			3.5.1.1. Fatigue loads on highway bridges
			3.5.1.2. Fatigue loads on railway bridges
		3.5.2. Dynamic loads
			3.5.2.1. General
			3.5.2.2. Dynamic loads on railway bridges
		3.5.3. Accidental forces
			3.5.3.1. General
			3.5.3.2. Collision forces from vehicles under the bridge
			3.5.3.3. Collision forces on decks
			3.5.3.4. Actions from vehicles on the bridge
			3.5.3.5. Collision forces on curbs
			3.5.3.6. Collision forces on vehicle restraint systems
			3.5.3.7. Collision forces on structural members
			3.5.3.8. Actions on pedestrian parapets
		3.5.4. Actions on footways, cycle tracks, and footbridges
		3.5.5. Thermally induced loads
	3.6. Load combinations
		3.6.1. General
		3.6.2. Groups of traffic loads for highway bridges
		3.6.3. Groups of traffic loads for railway bridges
	3.7. Design approaches
		3.7.1. General
		3.7.2. Allowable stress design approach
		3.7.3. Limit states design approach
		3.7.4. Limit states design codes
	3.8. Stability of steel and steel-concrete composite plate girder bridges
		3.8.1. General
		3.8.2. Bending moment resistance of steel plate girders
		3.8.3. Lateral torsional buckling of plate girders in bending
		3.8.4. Shear resistance of steel plate girders
		3.8.5. Plate buckling effects due to direct stresses
			3.8.5.1. General
			3.8.5.2. Stiffened plate elements with longitudinal stiffeners
			3.8.5.3. Plate type behavior
			3.8.5.4. Column type buckling behavior
			3.8.5.5. Interaction between plate and column buckling
			3.8.5.6. Verification
		3.8.6. Behavior of steel-concrete composite plate girders
			3.8.6.1. Effective width of flanges for shear lag
			3.8.6.2. Bending resistance of composite plate girders
			3.8.6.3. Resistance to vertical shear
			3.8.6.4. Shear connection
			3.8.6.5. Design equations for the evaluation of headed stud capacities
				3.8.6.5.1. Composite beams with solid reinforced concrete slabs
				3.8.6.5.2. Composite beams with profiled steel sheeting
				3.8.6.5.3. Composite beams with prestressed hollow core concrete slabs
	3.9. Stability of steel and steel-concrete composite truss bridges
		3.9.1. General
		3.9.2. Design of tension members
		3.9.3. Design of compression members
	3.10. Design of bolted and welded joints
		3.10.1. General
		3.10.2. Connections made with bolts or pins
			3.10.2.1. Bolted connections
			3.10.2.2. Connections made with pins
		3.10.3. Design of welded joints
	3.11. Design of bridge bearings
		3.11.1. General
		3.11.2. Examples of proprietary bearings
		3.11.3. Examples of steel fabricated bearings
		3.11.4. Design rules for bearings
		3.11.5. Design rules for fabricated steel bearings
	References
Chapter 4: Design examples of steel and steel-concrete composite bridges
	4.1. General remarks
	4.2. Design example of a double track plate girder deck railway steel bridge
		4.2.1. Design of the stringers (longitudinal floor beams)
		4.2.2. Design of the cross girders
		4.2.3. Design of the main plate girders
		4.2.4. Curtailment of the flange plates of the main plate girder
		4.2.5. Design of the fillet weld between flange plates and web
		4.2.6. Check of lateral torsional buckling of the plate girder compression flange
		4.2.7. Design of web stiffeners
			4.2.7.1. Load-bearing stiffeners
			4.2.7.2. Intermediate stiffeners
		4.2.8. Design of stringer bracing (lateral shock or nosing force bracings)
		4.2.9. Design of wind bracings
		4.2.10. Design of stringer-cross girder connection
		4.2.11. Design of cross girder-main plate girder connection
		4.2.12. Design of field splices
		4.2.13. Design of roller steel fabricated bearings
		4.2.14. Design of hinged line rocker steel fabricated bearings
	4.3. Design example of a through-truss highway steel bridge
		4.3.1. Design of the stringers
		4.3.2. Design of the cross girders
		4.3.3. Calculation of forces in truss members
			4.3.3.1. General
			4.3.3.2. Calculation of force in the upper chord member U5
			4.3.3.3. Calculation of force in the lower chord member L5
			4.3.3.4. Calculation of force in the lower chord member L4
			4.3.3.5. Calculation of force in the lower chord member L3
			4.3.3.6. Calculation of force in the lower chord member L2
			4.3.3.7. Calculation of force in the diagonal chord member D5
			4.3.3.8. Calculation of force in the diagonal chord member D4
			4.3.3.9. Calculation of force in the diagonal chord member D3
			4.3.3.10. Calculation of force in the diagonal chord member D2
			4.3.3.11. Calculation of force in the diagonal chord member D1
			4.3.3.12. Calculation of the reactions at supports
			4.3.3.13. Design of the maximum compression upper chord member U5
			4.3.3.14. Design of the compression upper chord member U3
			4.3.3.15. Design of the compression upper chord member U2
			4.3.3.16. Design of the compression upper chord member U1
			4.3.3.17. Design of the compression vertical member V5
			4.3.3.18. Design of the compression vertical member V4
			4.3.3.19. Design of the compression vertical member V3
			4.3.3.20. Design of the compression vertical member V2
			4.3.3.21. Design of the compression vertical member V1
			4.3.3.22. Design of the diagonal member D5
			4.3.3.23. Design of the diagonal tension member D3
			4.3.3.24. Design of the diagonal tension member D2
			4.3.3.25. Design of the diagonal tension member D1
			4.3.3.26. Design of the lower chord member L5
			4.3.3.27. Design of the lower chord member L4
			4.3.3.28. Design of the lower chord member L3
			4.3.3.29. Design of the lower chord member L2
			4.3.3.30. Design of stringer-cross girder connection
			4.3.3.31. Design of cross girder-main truss connection
			4.3.3.32. Design of wind bracings
			4.3.3.33. Design of roller steel fabricated bearings
			4.3.3.34. Design of hinged line rocker steel fabricated bearings
			4.3.3.35. Design of joint J1
			4.3.3.36. Design of joint J2
			4.3.3.37. Design of joint J3
			4.3.3.38. Design of joint J4
			4.3.3.39. Design of joint J5
			4.3.3.40. Design of joint J6
			4.3.3.41. Design of joint J7
			4.3.3.42. Design of joint J8
			4.3.3.43. Design of joint J9
			4.3.3.44. Design of joint J10
			4.3.3.45. Design of joint J11
			4.3.3.46. Design of joint J12
			4.3.3.47. Design of joint J13
	4.4. Design example of a highway steel-concrete composite bridge
		4.4.1. Calculation of loads acting on the composite bridge
		4.4.2. Design of the composite plate girder cross section at mid and quarter-span
		4.4.3. Design of wind bracings
		4.4.4. Design of web stiffeners
			4.4.4.1. Load-bearing stiffeners
			4.4.4.2. Intermediate stiffeners
		4.4.5. Design of field splices
		4.4.6. Design of roller steel fabricated bearings
		4.4.7. Design of hinged line rocker steel fabricated bearings
	4.5. Design example of a double track plate girder pony railway steel bridge
		4.5.1. Design of the stringers
		4.5.2. Design of the cross girders
		4.5.3. Design of the main plate girders
		4.5.4. Curtailment of the flange plates of the main plate girder
		4.5.5. Design of the fillet weld between flange plates and web
		4.5.6. Check of lateral torsional buckling of the plate girder compression flange
		4.5.7. Design of web stiffeners
			4.5.7.1. Load-bearing stiffeners
			4.5.7.2. Intermediate stiffeners
		4.5.8. Design of stringer bracing (lateral shock or nosing force bracings)
		4.5.9. Design of wind bracings
		4.5.10. Design of stringer-cross girder connection
		4.5.11. Design of cross girder-main plate girder connection
		4.5.12. Design of field splices
		4.5.13. Design of roller steel fabricated bearings
		4.5.14. Design of hinged line rocker steel fabricated bearings
	4.6. Design example of a deck truss highway steel bridge
		4.6.1. Design of the stringers
		4.6.2. Design of the cross girders
		4.6.3. Calculation of forces in truss members
			4.6.3.1. General
			4.6.3.2. Calculation of force in the upper chord member L4
			4.6.3.3. Calculation of force in the lower chord member L3
			4.6.3.4. Calculation of force in the upper chord member U4
			4.6.3.5. Calculation of force in the lower chord member U2
			4.6.3.6. Calculation of force in the diagonal chord member D4
			4.6.3.7. Calculation of force in the diagonal chord member D3
			4.6.3.8. Calculation of force in the diagonal chord member D2
			4.6.3.9. Calculation of force in the diagonal chord member D1
			4.6.3.10. Calculation of the reactions at supports
			4.6.3.11. Calculation of force in the vertical members
			4.6.3.12. Design of the maximum compression upper chord members U4 and U3
			4.6.3.13. Design of the compression upper chord members U2 and U1
			4.6.3.14. Design of the lower chord member L4 and L5
			4.6.3.15. Design of the lower chord members L3 and L2
			4.6.3.16. Design of the compression vertical member V1
			4.6.3.17. Design of the compression vertical members V2 and V4
			4.6.3.18. Design of the diagonal member D1
			4.6.3.19. Design of the diagonal tension member D3
			4.6.3.20. Design of the compression diagonal member D2
			4.6.3.21. Design of the compression diagonal member D4
			4.6.3.22. Design of stringer-cross girder connection
			4.6.3.23. Design of cross girder-main truss connection
			4.6.3.24. Design of wind bracings
			4.6.3.25. Design of roller steel fabricated bearings
			4.6.3.26. Design of hinged line rocker steel fabricated bearings
			4.6.3.27. Design of joint J1
			4.6.3.28. Design of joint J2
			4.6.3.29. Design of joint J3
			4.6.3.30. Design of joint J4
			4.6.3.31. Design of joint J5
			4.6.3.32. Design of joint J6
			4.6.3.33. Design of joint J7
			4.6.3.34. Design of joint J8
			4.6.3.35. Design of joint J9
			4.6.3.36. Design of joint J10
			4.6.3.37. Design of joint J11
Chapter 5: Finite element analysis of steel and steel-concrete composite bridges
	5.1. General remarks
	5.2. Choice of finite element types for steel and steel-concrete composite bridges
		5.2.1. Main continuum, structural, and special purpose finite elements
		5.2.2. Contact and interaction elements
			5.2.2.1. General
			5.2.2.2. Defining general contact interactions
			5.2.2.3. Defining contact pair interactions
			5.2.2.4. Defining contact with contact elements
			5.2.2.5. Frictional behavior
	5.3. Choice of finite element mesh for the bridges and bridge components
	5.4. Material modeling of the bridge components
		5.4.1. General
		5.4.2. Material modeling of structural steel
		5.4.3. Material modeling of concrete
			5.4.3.1. General
			5.4.3.2. Concrete smeared cracking
			5.4.3.3. Concrete damaged plasticity
	5.5. Linear and nonlinear analyses of the bridges and bridge components
		5.5.1. General
		5.5.2. Linear Eigen value buckling analysis
		5.5.3. Materially and geometrically nonlinear analyses
	5.6. Riks method
		5.6.1. Dynamic analyses
		5.6.2. Thermal (heat transfer) and thermal-stress analyses
			5.6.2.1. General
			5.6.2.2. Uncoupled heat transfer analyses
			5.6.2.3. Sequentially coupled thermal-stress analysis
			5.6.2.4. Fully coupled thermal-stress analysis
	5.7. Modeling of initial imperfections and residual stresses
	5.8. Modeling of shear connection for steel-concrete composite bridges
	5.9. Application of loads and boundary conditions on the bridges
	References
Chapter 6: Examples of finite element models of steel bridges
	6.1. General remarks
	6.2. Previous work
	6.3. Finite element modeling and results of example 1
	6.4. Finite element modeling and results of example 2
	6.5. Finite element modeling and results of example 3
	6.6. Finite element modeling and results of example 4
	References
Chapter 7: Examples of finite element models of steel-concrete composite bridges
	7.1. General remarks
	7.2. Previous work
	7.3. Finite element modeling and results of example 1
	7.4. Finite element modeling and results of example 2
	7.5. Finite element modeling and results of example 3
	References
Chapter 8: Extension of the combined finite element analysis and design approach to composite highway bridges with pr
	8.1. General remarks
	8.2. Previous work
	8.3. Design example of a composite highway bridge with profiled steel sheeting
		8.3.1. General layout and description of the composite highway bridge
		8.3.2. Dead loads of the composite highway bridge
		8.3.3. Live loads acting on composite main plate girders
			8.3.3.1. Design bending moment and shear forces because of dead and live load with dynamic effect added (MEd) and (QEd)
			8.3.3.2. Bending moment because of dead and live load with dynamic effect added (MEd)
			8.3.3.3. Shearing force because of dead and live load with dynamic effect added (QEd)
			8.3.3.4. Design bending moment (MEd) and shear force (QEd)
		8.3.4. Design of the composite plate girder cross-sections
			8.3.4.1. Design of the intermediate composite plate girder cross-section at the middle 24m of the bridge
			8.3.4.2. Design of the intermediate composite plate girder cross-section near supports
			8.3.4.3. Check of shear forces
		8.3.5. Design of shear connection
		8.3.6. Design of wind bracings
		8.3.7. Design of web stiffeners
			8.3.7.1. Load-bearing stiffeners
			8.3.7.2. Intermediate stiffeners
		8.3.8. Design of field splices
			8.3.8.1. Web splices
			8.3.8.2. Flange splices
		8.3.9. Design of roller steel-fabricated bearings
			8.3.9.1. Design of the sole plate
			8.3.9.2. Design of the rollers
			8.3.9.3. Design of upper bearing plate
			8.3.9.4. Design of lower bearing plate
		8.3.10. Design of hinged line rocker steel-fabricated bearings
	8.4. Main finite element modeling issues related to composite bridges with profiled steel sheeting
		8.4.1. General
		8.4.2. Lack of full-scale tests on composite highway bridges with profiled steel sheeting
		8.4.3. Nonlinear material properties of the different highway bridge components
		8.4.4. Correct choice of finite elements for the components of composite highway bridges with profiled steel sheeting
		8.4.5. Modeling of interfaces among the different components of composite highway bridges with profiled steel sheeting
		8.4.6. Modeling of shear connections in composite highway bridges with profiled steel sheeting
	8.5. Finite element modeling and results of a composite highway bridge with profiled steel sheeting
		8.5.1. General
		8.5.2. An example of existing experimental investigation on composite slab decks of highway bridges with profiled steel s ...
		8.5.3. Development of finite element models for composite slab decks of highway bridges with profiled steel sheeting
		8.5.4. Verification of finite element modeling results against test results for the composite slab decks
		8.5.5. Finite element modeling and results of the whole composite highway bridge with profiled steel sheeting previously  ...
	8.6. Further numerical studies for composite bridges with profiled steel sheeting
		8.6.1. General
		8.6.2. High strength steels usage in composite highway bridges
		8.6.3. Bridge moving loads changes in practice and design codes
		8.6.4. Traffic expansion and needs for bridge modifications
		8.6.5. Seismic and cyclic loading effects on composite highway bridges
		8.6.6. Composite highway bridges exposure to different fires
		8.6.7. Composite highway bridges exposure to explosive/blast loadings
		8.6.8. Local and progressive collapse of composite highway bridges
	8.7. Benefits of combining finite element analysis with design in bridges with profiled steel sheeting
	References
Index
Back Cover




نظرات کاربران