دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1st ed. 2021]
نویسندگان: Gerd Keiser
سری:
ISBN (شابک) : 9813346647, 9789813346642
ناشر: Springer
سال نشر: 2021
تعداد صفحات: 662
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 48 Mb
در صورت تبدیل فایل کتاب Fiber Optic Communications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ارتباطات فیبر نوری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب اصول اساسی فناوری فیبر نوری مورد نیاز برای درک شبکههای مخابراتی مدرن با ظرفیت بالا را برجسته میکند. چنین شبکههایی با کاربردهای مختلف از مرور وب ساده تا تشخیص حیاتی مراقبتهای بهداشتی و محاسبات ابری به بخش ضروری جامعه تبدیل شدهاند. از آنجایی که کاربران انتظار دارند این خدمات همیشه در دسترس باشند، مهندسی دقیق در همه فناوریها از توسعه اجزا تا عملیات شبکه مورد نیاز است. برای دستیابی به این درک، این کتاب ابتدا یک درمان جامع از ساختارهای فیبر نوری مختلف و اجزای مختلف فوتونیک مورد استفاده در شبکههای فیبر نوری ارائه میکند. در ادامه این بحث، اصول طراحی اساسی لینک های انتقال فیبر نوری دیجیتال و آنالوگ آورده شده است. فصل های پایانی معماری و ویژگی های عملکرد شبکه های نوری را ارائه می دهند.
This book highlights the fundamental principles of optical fiber technology required for understanding modern high-capacity lightwave telecom networks. Such networks have become an indispensable part of society with applications ranging from simple web browsing to critical healthcare diagnosis and cloud computing. Since users expect these services to always be available, careful engineering is required in all technologies ranging from component development to network operations. To achieve this understanding, this book first presents a comprehensive treatment of various optical fiber structures and diverse photonic components used in optical fiber networks. Following this discussion are the fundamental design principles of digital and analog optical fiber transmission links. The concluding chapters present the architectures and performance characteristics of optical networks.
Preface Use of This Book Acknowledgements Contents About the Author 1 Perspectives on Lightwave Communications 1.1 Reasons for Fiber Optic Communications 1.1.1 The Road to Optical Networks 1.1.2 Benefits of Using Optical Fibers 1.2 Optical Wavelength Bands 1.2.1 Electromagnetic Energy Spectrum 1.2.2 Optical Windows and Spectral Bands 1.3 Decibel Notation 1.4 Digital Multiplexing Techniques 1.4.1 Basic Telecom Signal Multiplexing 1.4.2 Multiplexing Hierarchy in SONET/SDH 1.4.3 Optical Transport Network (OTN) 1.5 Multiplexing of Wavelength Channels 1.5.1 Basis of WDM 1.5.2 Polarization Division Multiplexing 1.5.3 Optical Fibers with Multiple Cores 1.6 Basic Elements of Optical Fiber Systems 1.7 Evolution of Fiber Optic Networks 1.8 Standards for Fiber Optic Communications 1.9 Summary References 2 Optical Fiber Structures and Light Guiding Principles 2.1 The Nature of Light 2.1.1 Polarization 2.1.2 Linear Polarization 2.1.3 Elliptical Polarization and Circular Polarization 2.1.4 Quantum Aspects of Light 2.2 Basic Laws and Definitions of Optics 2.2.1 Concept of Refractive Index 2.2.2 Basis of Reflection and Refraction 2.2.3 Polarization Characteristics of Light 2.2.4 Polarization-Sensitive Devices 2.3 Optical Fiber Configurations and Modes 2.3.1 Conventional Fiber Types 2.3.2 Concepts of Rays and Modes 2.3.3 Structure of Step-Index Fibers 2.3.4 Ray Optics Representation 2.3.5 Lightwaves in a Dielectric Slab Waveguide 2.4 Modes in Circular Waveguides 2.4.1 Basic Modal Concepts 2.4.2 Cutoff Wavelength and V Number 2.4.3 Optical Power in Step-Index Fibers 2.4.4 Linearly Polarized Modes 2.5 Single-Mode Fibers 2.5.1 SMF Construction 2.5.2 Definition of Mode–Field Diameter 2.5.3 Origin of Birefringence 2.5.4 Effective Refractive Index 2.6 Graded-Index (GI) Fibers 2.6.1 Core Structure of GI Fibers 2.6.2 GI Fiber Numerical Aperture 2.6.3 Cutoff Condition in GI Fibers 2.7 Optical Fiber Materials 2.7.1 Glass Optical Fibers 2.7.2 Standard Fiber Fabrication 2.7.3 Active Glass Optical Fibers 2.7.4 Plastic Optical Fibers 2.8 Photonic Crystal Fiber Concepts 2.8.1 Index-Guiding PCF 2.8.2 Photonic Bandgap Fiber 2.9 Optical Fiber Cables 2.9.1 Fiber Optic Cable Structures 2.9.2 Designs of Indoor Optical Cables 2.9.3 Designs of Outdoor Optical Cables 2.10 Summary Appendix: The Fresnel Equations References 3 Optical Signal Attenuation and Dispersion 3.1 Fiber Attenuation 3.1.1 Units for Fiber Attenuation 3.1.2 Absorption of Optical Power 3.1.3 Scattering Losses in Optical Fibers 3.1.4 Fiber Bending Losses 3.1.5 Core and Cladding Propagation Losses 3.2 Optical Signal Dispersion Effects 3.2.1 Origins of Signal Dispersion 3.2.2 Modal Delay Effects 3.2.3 Factors Contributing to Dispersion 3.2.4 Group Delay Results 3.2.5 Material-Induced Dispersion 3.2.6 Effects of Waveguide Dispersion 3.2.7 Dispersion Behavior in Single-Mode Fibers 3.2.8 Origin of Polarization-Mode Dispersion 3.3 Design and Characteristics of SMFs 3.3.1 Tailoring of Refractive Index Profiles 3.3.2 Concept of Cutoff Wavelength 3.3.3 Standards for Dispersion Calculations 3.3.4 Definition of Mode-Field Diameter 3.3.5 Bending Loss in Single-Mode Fibers 3.4 ITU-T Standards for Fibers 3.4.1 Recommendation G.651.1 3.4.2 Recommendation G.652 3.4.3 Recommendation G.653 3.4.4 Recommendation G.654 3.4.5 Recommendation G.655 3.4.6 Recommendation G.656 3.4.7 Recommendation G.657 3.5 Designs and Use of Specialty Fibers 3.6 Character of Multicore Optical Fibers 3.7 Summary References 4 Light Sources for Fiber Links 4.1 Basic Concepts of Semiconductor Physics 4.1.1 Semiconductor Energy Bands 4.1.2 Intrinsic and Extrinsic Materials 4.1.3 Concept of a pn Junction 4.1.4 Direct Bandgap and Indirect Bandgap 4.1.5 Fabrication of Semiconductor Devices 4.2 Principles of Light-Emitting Diodes (LEDs) 4.2.1 LED Structures 4.2.2 Semiconductor Materials for Light Sources 4.2.3 LED Quantum Efficiency and Output Power 4.2.4 Response Time of an LED 4.3 Principles of Laser Diodes 4.3.1 Modes and Threshold Conditions in Laser Diodes 4.3.2 Laser Diode Rate Equations 4.3.3 External Differential Quantum Efficiency 4.3.4 Laser Resonant Frequencies 4.3.5 Structures and Radiation Patterns of Laser Diodes 4.3.6 Lasers Operating in a Single Mode 4.3.7 Modulation of Laser Diodes 4.3.8 Laser Output Spectral Width 4.3.9 External Laser Light Modulation 4.3.10 Lasing Threshold Temperature Effects 4.4 Output Linearity of Light Sources 4.5 Summary References 5 Optical Power Coupling 5.1 Source-to-Fiber Power Coupling 5.1.1 Light Source Emission Patterns 5.1.2 Calculation of Power Coupling 5.1.3 Optical Coupling Versus Wavelength 5.1.4 Equilibrium Numerical Aperture 5.2 Coupling Improvement with Lensing Schemes 5.3 Losses Between Fiber Joints 5.3.1 Mechanical Misalignment Effects 5.3.2 Fiber Variation Losses 5.3.3 Single-Mode Fiber Losses 5.3.4 Preparation of Fiber End Faces 5.4 Summary References 6 Photodetection Devices 6.1 Operation of Photodiodes 6.1.1 The pin Photodetector 6.1.2 Basics of Avalanche Photodiodes 6.2 Noise Effects in Photodetectors 6.2.1 Signal-to-Noise Ratio 6.2.2 Sources of Photodetector Noise 6.2.3 Signal-to-Noise Ratio Limits 6.2.4 Noise-Equivalent Power and Detectivity 6.3 Response Times of Photodiodes 6.3.1 Photocurrent in the Depletion Layer 6.3.2 Response Time Characteristics 6.4 Comparisons of Photodetectors 6.5 Summary References 7 Optical Receiver Operation 7.1 Basic Receiver Operation 7.1.1 Transmitting Digital Signals 7.1.2 Sources of Detection Errors 7.1.3 Receiver Front-End Amplifiers 7.2 Performance Characteristics of Digital Receivers 7.2.1 Determining Probability of Error 7.2.2 Specifying Receiver Sensitivity 7.2.3 The Basic Quantum Limit 7.3 Principles of Eye Diagrams 7.3.1 Features of Eye Patterns 7.3.2 BER and Q-Factor Measurements 7.4 Burst-Mode Receivers 7.5 Characteristics of Analog Receivers 7.6 Summary References 8 Digital Optical Fiber Links 8.1 Basic Optical Fiber Links 8.1.1 Signal Formats for Transporting Information 8.1.2 Considerations for Designing Links 8.1.3 Creating a Link Power Budget 8.1.4 Formulating a Rise-Time Budget 8.1.5 Transmission at Short Wavelengths 8.1.6 Attenuation Limits for SMF Links 8.2 Concepts of Link Power Penalties 8.2.1 Power Penalties from Chromatic Dispersion 8.2.2 Power Penalties Arising from PMD 8.2.3 Extinction Ratio Power Penalties 8.2.4 Modal Noise Power Penalties 8.2.5 Power Penalties Due to Mode-Partition Noise 8.2.6 Chirping-Induced Power Penalties 8.2.7 Link Instabilities from Reflection Noise 8.3 Detection and Control of Errors 8.3.1 Concept of Error Detection 8.3.2 Codes Used for Linear Error Detection 8.3.3 Error Detection with Polynomial Codes 8.3.4 Using Redundant Bits for Error Correction 8.4 Coherent Detection Schemes 8.4.1 Fundamental Concepts 8.4.2 Homodyne Detection 8.4.3 Heterodyne Detection 8.4.4 SNR in Coherent Detection 8.4.5 BER Comparisons in Coherent Detection 8.5 Higher-Order Signal Modulation Formats 8.5.1 Concept of Spectral Efficiency 8.5.2 Phase Shift Keying or IQ Modulation 8.5.3 Differential Quadrature Phase-Shift Keying 8.5.4 Quadrature Amplitude Modulation (QAM) 8.6 Summary References 9 Analog Optical Fiber Channels 9.1 Basic Elements of Analog Links 9.2 Concept of Carrier-to-Noise Ratio 9.2.1 Carrier Power 9.2.2 Photodetector and Preamplifier Noises 9.2.3 Effects of Relative Intensity Noise (RIN) 9.2.4 Limiting C/N Conditions 9.3 Multichannel Amplitude Modulation 9.4 Spurious-Free Dynamic Range 9.5 Radio-Over-Fiber Links 9.6 Microwave Photonics 9.7 Summary References 10 Wavelength Division Multiplexing (WDM) 10.1 Concepts of WDM 10.1.1 WDM Operational Principles 10.1.2 Standards for WDM 10.2 Passive Optical Couplers 10.2.1 The 2 × 2 Fiber Coupler 10.2.2 Scattering Matrix Analyses of Couplers 10.2.3 Basis of the 2 × 2 Waveguide Coupler 10.2.4 Principal Role of Star Couplers 10.2.5 Mach–Zehnder Interferometry Techniques 10.3 Nonreciprocal Isolators and Circulators 10.3.1 Functions of Optical Isolators 10.3.2 Characteristics of Optical Circulators 10.4 WDM Devices Based on Grating Principles 10.4.1 Grating Basics 10.4.2 Optical Fiber Bragg Grating (FBG) 10.4.3 WDM FBG Applications 10.5 Dielectric Thin-Film Filter (TFF) 10.5.1 Applications of Etalon Theory 10.5.2 TFF Applications to WDM Links 10.6 Arrayed Waveguide Devices 10.7 WDM Applications of Diffraction Gratings 10.8 Summary References 11 Basics of Optical Amplifiers 11.1 Fundamental Optical Amplifier Types 11.1.1 General Applications of Optical Amplifiers 11.1.2 Amplifier Classifications 11.2 Semiconductor Optical Amplifiers 11.2.1 External Pumping of Active Medium 11.2.2 Amplifier Signal Gain 11.2.3 SOA Bandwidth 11.3 Erbium-Doped Fiber Amplifiers 11.3.1 Basics of Fiber Amplifier Pumping 11.3.2 Construction of an EDFA 11.3.3 EDFA Power-Conversion Efficiency and Gain 11.4 Noises Generated in Optical Amplifiers 11.5 Optical Signal-To-Noise Ratio (OSNR) 11.6 Fiber Link Applications 11.6.1 Power Amplifier Functions 11.6.2 Use of In-Line Amplifiers 11.6.3 Optical Amplifier as a Preamplifier 11.7 Raman Optical Amplifiers 11.7.1 Principle of Raman Gain 11.7.2 Pump Lasers for Raman Amplifiers 11.8 Multiband Optical Amplifiers 11.9 Overview of Optical Fiber Lasers 11.10 Summary References 12 Nonlinear Processes in Optical Fibers 12.1 Classifications of Nonlinearities 12.2 Effective Length and Effective Area 12.3 Stimulated Raman Scattering 12.4 Stimulated Brillouin Scattering 12.5 Self-Phase Modulation 12.6 Cross-Phase Modulation in WDM Systems 12.7 Four-Wave Mixing in WDM Channels 12.8 Mitigation Schemes for FWM 12.9 Basic Optical Wavelength Converters 12.9.1 Wavelength Converters Using Optical Gatings 12.9.2 Wavelength Converters Based on Wave-Mixing 12.10 Principles of Solitons 12.10.1 Structures of Soliton Pulses 12.10.2 Fundamental Parameters for Solitons 12.10.3 Width and Spacing of Soliton Pulses 12.11 Summary References 13 Fiber Optic Communication Networks 13.1 Concepts of Optical Networks 13.1.1 Terminology Used for Networks 13.1.2 Generic Network Categories 13.1.3 Layered Structure Approach to Network Architectures 13.1.4 Optical Layer Functions 13.2 Common Network Topologies 13.2.1 Performance of Passive Linear Buses 13.2.2 Performance of Star Networks 13.3 Basic SONET/SDH Concepts 13.3.1 SONET/SDH Frame Formats and Speeds 13.3.2 Optical Interfaces in SONET/SDH 13.3.3 SONET/SDH Rings 13.3.4 SONET/SDH Network Architectures 13.4 High-Speed Lightwave Transceivers 13.4.1 Links Operating at 10 Gb/s 13.4.2 Transceivers for 40 Gb/s Links 13.4.3 Transceivers for 100 Gb/s Links 13.4.4 Links Operating at 400 Gb/s and Higher 13.5 Schemes for Optical Add/Drop Multiplexing 13.5.1 Configurations of OADM Equipment 13.5.2 Reconfiguring OADM Equipment 13.6 Optical Switching Architectures 13.6.1 Concept of an Optical Crossconnect 13.6.2 Considerations for Wavelength Conversion 13.6.3 Methodologies for Wavelength Routing 13.6.4 Optical Packet Switching 13.6.5 Optical Burst Switching 13.6.6 Elastic Optical Networks 13.7 WDM Network Implementations 13.7.1 Long-Distance WDM Networks 13.7.2 Metro WDM Networks 13.7.3 Data Center Networks 13.8 Passive Optical Networks 13.8.1 Basic Architectures for PONs 13.8.2 Active PON Modules 13.8.3 Controlling PON Traffic Flows 13.8.4 Protection Switching for PON Configurations 13.8.5 WDM PON Architectures 13.9 Summary References 14 Basic Measurement and Monitoring Techniques 14.1 Overview of Measurement Standards 14.2 Survey of Test Equipment 14.2.1 Lasers Used for Test Support 14.2.2 Optical Spectrum Analyzer 14.2.3 Multipurpose Test Equipment 14.2.4 Optical Attenuators 14.2.5 OTN Tester for Performance Verification 14.2.6 Visual Fault Indicator 14.3 Optical Power Measurement Methods 14.3.1 Physical Basis of Optical Power 14.3.2 Optical Power Meters 14.4 Characterization of Optical Fibers 14.4.1 Refracted Near-Field Method 14.4.2 Transmitted Near-Field Technique 14.4.3 Optical Fiber Attenuation Measurements 14.5 Concept of Eye Diagram Tests 14.5.1 Standard Mask Testing 14.5.2 Stressed Eye Opening 14.5.3 BER Contours 14.6 Optical Time-Domain Reflectometer 14.6.1 OTDR Trace Characterization 14.6.2 Attenuation Measurements with an OTDR 14.6.3 OTDR Dead Zone 14.6.4 Locating Fiber Faults 14.6.5 Measuring Optical Return Loss 14.7 Optical Performance Monitoring 14.7.1 Network Management Systems and Functions 14.7.2 Optical Layer Management 14.7.3 Fundamental OPM Function 14.7.4 OPM Architecture for Network Maintenance 14.7.5 Detecting Network Faults 14.8 Optical Fiber Network Performance Testing 14.8.1 BER Measurements 14.8.2 OSNR Measurements 14.8.3 Q Factor Estimation 14.8.4 OMA Measurement Method 14.8.5 Measurement of Timing Jitter 14.9 Summary References Appendix A International Units and Physical Constants Appendix B Decibels B.1 Definition B.2 The dBm B.3 The Neper Appendix C Acronyms Appendix D List of Important Roman Symbols Appendix E List of Important Greek Symbols