ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Feedback Control of Dynamic Systems 8th edition

دانلود کتاب بازخورد کنترل سیستم های پویا ویرایش هشتم

Feedback Control of Dynamic Systems 8th edition

مشخصات کتاب

Feedback Control of Dynamic Systems 8th edition

ویرایش:  
نویسندگان: , ,   
سری: 8 ed 
ISBN (شابک) : 9780134685717 
ناشر: Pearson 
سال نشر: 0 
تعداد صفحات: 3129 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 57 مگابایت 

قیمت کتاب (تومان) : 33,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 25


در صورت تبدیل فایل کتاب Feedback Control of Dynamic Systems 8th edition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب بازخورد کنترل سیستم های پویا ویرایش هشتم نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Front Cover
Table of Laplace Transforms
Title Page
Copyright Page
Contents
Preface
1 An Overview and Brief History of Feedback Control
	A Perspective on Feedback Control
	Chapter Overview
		1.1 A Simple Feedback System
		1.2 A First Analysis of Feedback
		1.3 Feedback System Fundamentals
		1.4 A Brief History
		1.5 An Overview of the Book
		Summary
		Review Questions
		Problems
2 Dynamic Models
	A Perspective on Dynamic Models
	Chapter Overview
		2.1 Dynamics of Mechanical Systems
			2.1.1 Translational Motion
			2.1.2 Rotational Motion
			2.1.3 Combined Rotation and Translation
			2.1.4 Complex Mechanical Systems
			2.1.5 Distributed Parameter Systems
			2.1.6 Summary: Developing Equations of Motion for Rigid Bodies
		2.2 Models of Electric Circuits
		2.3 Models of Electromechanical Systems
			2.3.1 Loudspeakers
			2.3.2 Motors
			2.3.3 Gears
		2.4 Heat and Fluid-Flow Models
			2.4.1 Heat Flow
			2.4.2 Incompressible Fluid Flow
		2.5 Historical Perspective
		Summary
		Review Questions
		Problems
3 Dynamic Response
	A Perspective on System Response
	Chapter Overview
		3.1 Review of Laplace Transforms
			3.1.1 Response by Convolution
			3.1.2 Transfer Functions and Frequency Response
			3.1.3 The L− Laplace Transform
			3.1.4 Properties of Laplace Transforms
			3.1.5 Inverse Laplace Transform by Partial-fraction Expansion
			3.1.6 The Final Value Theorem
			3.1.7 Using Laplace Transforms to Solve Differential Equations
			3.1.8 Poles and Zeros
			3.1.9 Linear System Analysis Using Matlab
		3.2 System Modeling Diagrams
			3.2.1 The Block Diagram
			3.2.2 Block-Diagram Reduction Using Matlab
			3.2.3 Mason’s Rule and the Signal Flow Graph
		3.3 Effect of Pole Locations
		3.4 Time-Domain Specifications
			3.4.1 Rise Time
			3.4.2 Overshoot and Peak Time
			3.4.3 Settling Time
		3.5 Effects of Zeros and Additional Poles
		3.6 Stability
			3.6.1 Bounded Input–Bounded Output Stability
			3.6.2 Stability of LTI Systems
			3.6.3 Routh’s Stability Criterion
		3.7 Obtaining Models from Experimental Data: System Identification
		3.8 Amplitude and Time Scaling
		3.9 Historical Perspective
		Summary
		Review Questions
		Problems
4 A First Analysis of Feedback
	A Perspective on the Analysis of Feedback
	Chapter Overview
		4.1 The Basic Equations of Control
			4.1.1 Stability
			4.1.2 Tracking
			4.1.3 Regulation
			4.1.4 Sensitivity
		4.2 Control of Steady-State Error to Polynomial Inputs: System Type
			4.2.1 System Type for Tracking
			4.2.2 System Type for Regulation and Disturbance Rejection
		4.3 The Three-term Controller: PID Control
			4.3.1 Proportional Control (P)
			4.3.2 Integral Control (I)
			4.3.3 Derivative Control (D)
			4.3.4 Proportional Plus Integral Control (PI)
			4.3.5 PID Control
			4.3.6 Ziegler–Nichols Tuning of the PID Controller
		4.4 Feedforward Control by Plant Model Inversion
		4.5 Introduction to Digital Control
		4.6 Sensitivity of Time Response to Parameter Change
		4.7 Historical Perspective
		Summary
		Review Questions
		Problems
5 The Root-Locus Design Method
	A Perspective on the Root-Locus Design Method
	Chapter Overview
		5.1 Root Locus of a Basic Feedback System
		5.2 Guidelines for Determining a Root Locus
			Rules for Determining a Positive (180◦)
Root Locus
			5.2.2 Summary of the Rules for Determining a Root Locus
			5.2.3 Selecting the Parameter Value
		5.3 Selected Illustrative Root Loci
		5.4 Design Using Dynamic Compensation
			5.4.1 Design Using Lead Compensation
			5.4.2 Design Using Lag Compensation
			5.4.3 Design Using Notch Compensation16
			5.4.4 Analog and Digital Implementations
		5.5 Design Examples Using the Root Locus
		5.6 Extensions of the Root-locus Method
			5.6.1 Rules for Plotting a Negative (0◦) Root Locus
			5.6.2 Successive Loop Closure
			5.6.3 Time Delay
		5.7 Historical Perspective
		Summary
		Review Questions
		Problems
6 The Frequency-Response Design Method
	A Perspective on the Frequency-Response Design Method
	Chapter Overview
		6.1 Frequency Response
			6.1.1 Bode Plot Techniques
			6.1.2 Steady-State Errors
		6.2 Neutral Stability
		6.3 The Nyquist Stability Criterion
			6.3.1 The Argument Principle
			6.3.2 Application of the Argument Principle to Control Design
		6.4 Stability Margins
		6.5 Bode’s Gain–Phase Relationship
		6.6 Closed-Loop Frequency Response
		6.7 Compensation
			6.7.1 PD Compensation
			6.7.2 Lead Compensation
			6.7.3 PI Compensation
			6.7.4 Lag Compensation
			6.7.5 PID Compensation
			6.7.6 Design Considerations
			6.7.7 Specifications in Terms of the Sensitivity Function
			6.7.8 Limitations on Design in Terms of the Sensitivity Function
		6.8 Time Delay
			6.8.1 Time Delay Via the Nyquist Diagram
		6.9 Alternative Presentation of Data
			6.9.1 Nichols Chart
			6.9.2 The Inverse Nyquist Diagram
		6.10 Historical Perspective
		Summary
		Review Questions
		Problems
7 State-Space Design
	A Perspective on State-Space Design
	Chapter Overview
		7.1 Advantages of State-Space
		7.2 System Description in State-Space
		7.3 Block Diagrams and State-Space
		7.4 Analysis of the State Equations
			7.4.1 Block Diagrams and Canonical Forms
			7.4.2 Dynamic Response from the State Equations
		7.5 Control-law Design for Full-State Feedback
			7.5.1 Finding the Control Law
			7.5.2 Introducing the Reference Input with Full-state Feedback
		7.6 Selection of Pole Locations for Good Design
			7.6.1 Dominant Second-Order Poles
			7.6.2 Symmetric Root Locus (SRL)
			7.6.3 Comments on the Methods
		7.7 Estimator Design
			7.7.1 Full-Order Estimators
			7.7.2 Reduced-Order Estimators
			7.7.3 Estimator Pole Selection
		7.8 Compensator Design: Combined Control Law and Estimator
		7.9 Introduction of the Reference Input with the Estimator
			7.9.1 General Structure for the Reference Input
			7.9.2 Selecting the Gain
		7.10 Integral Control and Robust Tracking
			7.10.1 Integral Control
			7.10.2 Robust Tracking Control: The Error-Space Approach
			7.10.3 Model-
Following Design
			7.10.4 The Extended Estimator
		7.11 Loop Transfer Recovery
		7.12 Direct Design with Rational Transfer Functions
		7.13 Design for Systems with Pure Time Delay
		7.14 Solution of State Equations
		7.15 Historical Perspective
		Summary
		Review Questions
		Problems
8 Digital Control
	A Perspective on Digital Control
	Chapter Overview
		8.1 Digitization
		8.2 Dynamic Analysis of Discrete Systems
			8.2.1 z-Transform
			8.2.2 z-Transform Inversion
			8.2.3 Relationship Between s and z
			8.2.4 Final Value Theorem
		8.3 Design Using Discrete Equivalents
			8.3.1 Tustin’s Method
			8.3.2 Zero-order Hold (ZOH) Method
			8.3.3 Matched Pole–Zero (MPZ) Method
			8.3.4 Modified Matched Pole–Zero (MMPZ) Method
			8.3.5 Comparison of Digital Approximation Methods
			8.3.6 Applicability Limits of the Discrete Equivalent Design Method
		8.4 Hardware Characteristics
			8.4.1 Analog-to-digital (A/D) Converters
			8.4.2 Digital-to-analog Converters
			8.4.3 Anti-Alias Prefilters
			8.4.4 The Computer
		8.5 Sample-Rate Selection
			8.5.1 Tracking Effectiveness
			8.5.2 Disturbance Rejection
			8.5.3 Effect of Anti-Alias Prefilter
			8.5.4 Asynchronous Sampling
		8.6 Discrete Design
			8.6.1 Analysis Tools
			8.6.2 Feedback Properties
			8.6.3 Discrete Design Example
			8.6.4 Discrete Analysis of Designs
		8.7 Discrete State-Space Design Methods
		8.8 Historical Perspective
		Summary
		Review Questions
		Problems
9 Nonlinear Systems
	A Perspective on Nonlinear Systems
	Chapter Overview
		9.1 Introduction and Motivation: Why Study Nonlinear Systems?
		9.2 Analysis by Linearization
			9.2.1 Linearization by Small-Signal Analysis
			9.2.2 Linearization by Nonlinear Feedback
			9.2.3 Linearization by Inverse Nonlinearity
		9.3 Equivalent Gain Analysis Using the Root Locus
			9.3.1 Integrator Antiwindup
		9.4 Equivalent Gain Analysis Using Frequency Response: Describing Functions
			9.4.1 Stability Analysis Using Describing Functions
		9.5 Analysis and Design Based on Stability
			9.5.1 the Phase Plane
			9.5.2 Lyapunov Stability Analysis
			9.5.3 The Circle Criterion
		9.6 Historical Perspective
		Summary
		Review Questions
		Problems
10 Control System Design: Principles and Case Studies
	A Perspective on Design Principles
	Chapter Overview
	10.1 An Outline of Control Systems Design
	10.2 Design of a Satellite’s Attitude Control
	10.3 Lateral and Longitudinal Controlof a Boeing 747
		10.3.1 Yaw Damper
		10.3.2 Altitude-Hold Autopilot
	10.4 Control of the Fuel–Air Ratioin an Automotive Engine
	10.5 Control of a Quadrotor Drone
	10.6 Control of RTP Systems in SemiconductorWafer Manufacturing
	10.7 Chemotaxis, or How E. Coli Swims Awayfrom Trouble
	10.8 Historical Perspective
	Summary
	Review Questions
	Problems
Appendix A Laplace Transforms
	A.1 The L− Laplace Transform
		A.1.1 Properties of Laplace Transforms
		A.1.2 Inverse Laplace Transform by Partial-FractionExpansion
		A.1.3 The Initial Value Theorem
		A.1.4 Final Value Theorem
Appendix B Solutions to theReview Questions
Appendix C Matlab Commands
Bibliography
Index
List of Appendices on the web at www.
pearsonglobaleditions.com
	Appendix WA: A Review of Complex Variables
	Appendix WB: Summary of Matrix Theory
	Appendix WC: Controllability and Observability
	Appendix WD: Ackermann’s Formula for Pole Placement
	Appendix W2.1.4: Complex Mechanical Systems
	Appendix W3.2.3:Mason’s Rule and the Signal-FlowGraph
	Appendix W.3.6.3.1: Routh Special Cases
	Appendix W3.7: System Identification
	Appendix W3.8: Amplitude and Time Scaling
	Appendix W4.1.4.1: The Filtered Case
	Appendix W4.2.2.1: Truxal’s Formula for the Error
Constants
	Appendix W4.5: Introduction to Digital Control
	Appendix W4.6: Sensitivity of Time Response to Parameter
Change
	Appendix W5.4.4: Analog and Digital Implementations
	Appendix W5.6.3: Root Locus with Time Delay
	Appendix W6.7.2: Digital Implementation of
Example 6.15
	Appendix W6.8.1: Time Delay via the Nyquist Diagram
	Appendix W6.9.2: The Inverse Nyquist Diagram
	Appendix W7.8: Digital Implementation of Example 7.31
	Appendix W7.9: Digital Implementation of Example 7.33
	Appendix W7.14: Solution of State Equations
	Appendix W8.7: Discrete State-Space Design Methods
Design Aids
Back Cover




نظرات کاربران