دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: سری: ISBN (شابک) : 9780875900964, 9781118664681 ناشر: American Geophysical Union سال نشر: 1999 تعداد صفحات: 224 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 27 مگابایت
در صورت تبدیل فایل کتاب Faults and Subsurface Fluid Flow in the Shallow Crust به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب گسل ها و جریان سیال زیرسطحی در پوسته کم عمق نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
توسط اتحادیه ژئوفیزیک آمریکا به عنوان بخشی از مجموعه مونوگراف های ژئوفیزیک منتشر شده است.
این جلد نمونه ای از تنوع تحقیقات در مورد گسل ها و جریان سیال در اواخر دهه 1990 را ارائه می دهد. توصیف دقیق سطح و زیرسطح ساختار ناحیه گسل و دیاژنز با مفاهیمی برای هیدرولوژی و زمین شناسی نفت. نقش گسل ها در سیستم های زمین گرمایی؛ مطالعات آزمایشگاهی مکانیک سنگ، نفوذپذیری و ژئوشیمی گسل ها و سنگ های گسلی؛ و مدلسازی ریاضی جریان سیال از میان سنگهای گسلدار و شکسته.بارزترین و جذاب ترین ویژگی حجم، و همچنین موضوع تحقیق کلی گسل ها و جریان سیال زیرسطحی، ماهیت بین رشته ای آن است. نویسندگان از زمینه های زمین شناسی ساختاری، زمین شناسی مهندسی، ژئوهیدرولوژی و هیدروژئولوژی، رسوب شناسی، زمین شناسی نفت، زمین شناسی زمین گرمایی، مکانیک سنگ و ژئوشیمی استخراج شده اند. به همین ترتیب، تاکید بر گسلها به جای شکستگیهای باز ساده، مسائلی را ایجاد میکند که در بسیاری از متون در مورد جریان از میان سنگهای شکسته به آن پرداخته نشده است. اگرچه گسلها نوعی شکستگی هستند و معناشناسی میتواند این موضوع را گیج کند، گسلها به طور کلی پیچیدهتر از شکستگیهای سادهای هستند که تمرکز بیشتر کارها در هیدرولوژی سنگ شکسته است. مهمتر از همه، گسلها میتوانند جابجاییهای بسیار بزرگی داشته باشند (تا کیلومترها) و بافتهای تکتونیکی پیچیده، پهنههای برآمدگی، و کنار هم قرار گرفتن سنگها یا رسوبات انواع مختلف را ایجاد کنند.
محتوا:Published by the American Geophysical Union as part of the Geophysical Monograph Series.
This volume offers a sample of the diversity of research on faults and fluid flow in the late 1990s. It describes detailed surface and subsurface characterization of fault-zone structure and diagenesis with implications for hydrology and petroleum geology; the role of faults in geothermal systems; laboratory studies of rock mechanics, permeability, and geochemistry of faults and fault rocks; and mathematical modeling of fluid flow through faulted and fractured rocks.The most striking and appealing feature of the volume, as well as the general research topic of faults and subsurface fluid flow, is its interdiscplinary nature. The authors are drawn from the fields of structural geology, engineering geology, geohydrology and hydrogeology, sedimentology, petroleum geology, geothermal geology, rock mechanics, and geochemistry. Likewise, the emphasis on faults rather than simple open fractures raises issues not addressed in much of the literature on flow through fractured rocks. Although faults are a type of fracture and semantics can confuse the issue, faults are generally more complicated than the simple fractures that are the focus of most work in fractured rock hydrology. Most notably, faults can have very large displacements (up to many kilometers) and develop complicated tectonic fabrics, gouge zones, and juxtaposition of rocks or sediments of different types.
Content:Faults and Subsurface Fluid Flowin the Shallow Crust......Page 1
Geophysical Monograph Series......Page 2
Geophysical Monograph Series......Page 3
Faults and Subsurface Fluid Flowin the Shallow Crust......Page 4
CONTENTS......Page 6
PREFACE......Page 8
Faults in Low Porosity Rocks......Page 9
Faults in High Porosity Rocks and Sediments......Page 10
TRACKING FLOW PATHS THROUGH PATTERNS OFDIAGENESIS AND GEOCHEMICAL ANALYSES......Page 11
REFERENCES......Page 12
1. INTRODUCTION......Page 14
3. OUTCROP CHARACTERIZATION......Page 16
4. CORE DESCRIPTIONS......Page 22
5. MICROSTRUCTURE......Page 25
7. STEAM INJECTION DATA......Page 26
8.1. Comparison Between Surface and Subsurface Data......Page 27
8.2. Trap Mechanism......Page 28
8.4. Influence of Lithology on Fault Characteristics......Page 29
9. CONCLUSIONS......Page 31
REFERENCES......Page 32
INTRODUCTION......Page 34
GEOLOGIC SETTING......Page 35
Architectural Elements......Page 39
Detailed Mapping......Page 42
Microscopic Deformation Features......Page 48
Deformation Processes......Page 50
Damage and Core Zone Evolution......Page 51
Microstructures: Implications for Permeability......Page 53
CONCLUSIONS......Page 54
REFERENCES......Page 55
INTRODUCTION......Page 57
GEOLOGIC SETTING......Page 58
STUDY METHODS......Page 59
TERMINOLOGY......Page 60
Fault with a clay core: Santa Ana site......Page 61
Fault without clay core: Elmendorf site......Page 63
Permeability and deformation: Santa Ana site......Page 67
Permeability and deformation: Elmendorf site......Page 68
Faulting and petrophysical changes: Santa Ana site......Page 69
IMPLICATIONS......Page 72
REFERENCES......Page 73
INTRODUCTION......Page 75
GEOLOGIC SETTING AND BRUSHY CANYON STRATIGRAPHY......Page 76
FIELD METHODS AND DATA ANALYSIS......Page 77
FAULT ZONE PERMEABILITY MODELS......Page 78
FAULT CHARACTERISTICS......Page 79
FRACTURE CHARACTERISTICS......Page 82
FAULT-PROXIMAL DIAGENESIS AND SEALING......Page 83
DISCUSSION......Page 84
REFERENCES......Page 86
1. INTRODUCTION......Page 88
2. BRITTLE FAULTING AND FLUID FLOW:CONTRASTS IN HYDROMECHANICAL BEHAVIORBETWEEN COMPACT AND POROUS ROCKS......Page 89
3. PORE SPACE STATISTICS AND PERCOLATIONNETWORK MODELING OF THE EVOLUTION OFPERMEABILITY......Page 92
4.1. Effect of Stress on the Development of Dilatancy,Brittle Faulting and Permeability......Page 96
4.2. Permeability Evolution: Interplay of Pore PressureExcess, Mean Stress and Deviatoric Stresses......Page 97
REFERENCES......Page 101
Fault Zone Architecture and Fluid Flow: Insights From Field Data and Numerical Modeling......Page 105
INTRODUCTION......Page 106
FAULT ZONE ARCHITECTURAL STYLES AND IDEALIZED PERMEABILITY STRUCTURES......Page 107
FIELD DATA AND SEGREGATION OF FRACTURE TYPES......Page 108
DETERMINATION OF FRACTURE NETWORK PARAMETERS......Page 110
THREE-DIMENSIONAL FRACTURE NETWORK MODEL CONSTRUCTION......Page 111
Distributed Deformation Zone Model......Page 113
SIMULATING FLUID FLOW IN FAULT ZONEMODELS......Page 114
Permeability Structure of the Fault Zone Components......Page 116
Permeability Structure of the Full Fault Zone Models......Page 119
Patterns of Fault-Related Fluid Flux......Page 120
DISCUSSION AND IMPLICATIONS FOR NATURAL FAULT ZONES......Page 123
SUMMARY OF MAJOR RESULTS AND CONCLUSIONS......Page 127
REFERENCES......Page 128
INTRODUCTION......Page 132
GEODYNAMIC MODELS OF THE SAN ANDREAS FAULT......Page 133
Salinian Block......Page 136
FIELD AND LABORATORY METHODOLOGY......Page 137
RESULTS AND DISCUSSION......Page 138
Isotopic Composition of Water......Page 139
Chemical Composition of Water......Page 141
Chemical Geothermometry......Page 143
Chemical and Isotopic Composition of Gases......Page 144
Fluid-San Andreas Fault Interactions......Page 145
CONCLUSIONS......Page 147
REFERENCES......Page 148
INTRODUCTION......Page 152
GEOLOGIC MEMBRANES......Page 153
RESULTS AND DISCUSSION......Page 154
REFERENCES......Page 160
Flow-Path Textures and Mineralogy in Tuffs of the Unsaturated Zone......Page 162
History of Secondary-Mineral Deposition......Page 163
Conceptual Model of Fast-Flow Paths......Page 166
Special Preparation of Paired Breccia/Wall-Rock Samples......Page 167
Calcite......Page 173
Clays......Page 176
Feldspar, Crystalline Silicas, and Fe-Ti Oxides......Page 177
Translocated Particulates......Page 178
Manganese Minerals......Page 179
MINERAL DEPOSITION AND FAULTTRANSMISSIVITY......Page 180
DATA EVALUATION FOR BRECCIA/WALL-ROCKPAIRED SAMPLES......Page 181
TEXTURAL STUDIES OF BRECCIA/WALL-ROCKPAIRED SAMPLES......Page 182
Southern ESF......Page 183
REFERENCES......Page 185
1. INTRODUCTION......Page 188
3.1 Uenotai Geothermal Field......Page 189
3.2 Sumikawa Geothermal Field......Page 190
3.3 Kakkonda Geothermal Field......Page 194
4. CHARACTERIZATION OF PRODUCTIVEFRACTURES......Page 196
5.1 Mechanisms of Brittle Failure......Page 198
5.3 Fault-Valve Behavior......Page 200
6.2 Formation Mechanism of High- and Low-AngleFractures......Page 201
6.3 Formation mechanism of dominant low-angle fractures......Page 203
7. CONCLUSION......Page 204
REFERENCES......Page 206
INTRODUCTION......Page 209
BRIEF DESCRIPTION OF THE HYDROGEOLOGY OFTHE STUDY AREA......Page 210
Southern profile, from west to east......Page 212
Middle Profile, BB'......Page 214
CONCLUSIONS......Page 219
REFERENCES......Page 223