دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فن آوری ویرایش: نویسندگان: Hamid Reza Karimi سری: ISBN (شابک) : 0128224738, 9780128224731 ناشر: Academic Press سال نشر: 2021 تعداد صفحات: 421 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 37 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تکنیک های عیب یابی و پیش آگهی برای سیستم های مهندسی پیچیده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تکنیکهای تشخیص و پیشآگهی خطا برای سیستمهای مهندسی پیچیده توصیفی سیستماتیک از بسیاری از جنبههای پیشبینی، طراحی، اجرا و کاوش تجربی روندهای نوظهور در تشخیص خطا و پیشآگهی خرابی در مکانیک، الکتریکی، سیستم های هیدرولیک و زیست پزشکی این کتاب به توسعه روشهای ریاضی برای تشخیص و جداسازی خطا، کنترل تحمل خطا و مشکلات پیشآگهی خرابی سیستمهای مهندسی اختصاص دارد. بخشها تکنیکهای جدیدی را در مدلسازی قابلیت اطمینان، تجزیه و تحلیل قابلیت اطمینان، طراحی قابلیت اطمینان، تشخیص خطا و شکست، پردازش سیگنال و کنترل متحمل خطا سیستمهای مهندسی ارائه میکنند.
بخشها بر توسعه روشهای ریاضی برای تشخیص و پیشآگهی خطاها یا خرابیها تمرکز میکنند، و بستری یکپارچه برای درک و کاربرد روشهای تشخیص پیشرفته و پیشآگهی برای بهبود اهداف قابلیت اطمینان در تئوری و عمل فراهم میکنند، مانند وسایل نقلیه، سیستم های تولیدی، مدارها، پروازها، سیستم های زیست پزشکی. این کتاب منبع ارزشمندی برای گروههای مختلف خوانندگان خواهد بود - مهندسان مکانیک که روی سیستمهای خودرو کار میکنند، مهندسان برق که روی سیستمهای ماشینهای دوار کار میکنند، مهندسان کنترلی که روی سیستمهای تشخیص عیب کار میکنند، ریاضیدانان و پزشکانی که روی دینامیک پیچیده کار میکنند، و بسیاری دیگر. p>
Fault Diagnosis and Prognosis Techniques for Complex Engineering Systems gives a systematic description of the many facets of envisaging, designing, implementing, and experimentally exploring emerging trends in fault diagnosis and failure prognosis in mechanical, electrical, hydraulic and biomedical systems. The book is devoted to the development of mathematical methodologies for fault diagnosis and isolation, fault tolerant control, and failure prognosis problems of engineering systems. Sections present new techniques in reliability modeling, reliability analysis, reliability design, fault and failure detection, signal processing, and fault tolerant control of engineering systems.
Sections focus on the development of mathematical methodologies for diagnosis and prognosis of faults or failures, providing a unified platform for understanding and applicability of advanced diagnosis and prognosis methodologies for improving reliability purposes in both theory and practice, such as vehicles, manufacturing systems, circuits, flights, biomedical systems. This book will be a valuable resource for different groups of readers – mechanical engineers working on vehicle systems, electrical engineers working on rotary machinery systems, control engineers working on fault detection systems, mathematicians and physician working on complex dynamics, and many more.
Front cover Half title Full title Copyright Contents Contributors Preface Chapter 1 - Quality-related fault detection and diagnosis: a technical review and summary 1.1 Introduction 1.2 Basic methodology 1.3 Recent research 1.3.1 The KDD algorithm 1.3.2 The KLS-based approach 1.3.3 Reconstruction partial derivative contribution plot 1.3.4 Kernel sample equivalent replacement 1.4 Simulation 1.4.1 Introduction of the Tennessee-Eastman process 1.4.2 Fault detection results 1.4.3 Nonlinear fault detection using KSER 1.4.4 Fault diagnosis without smearing effect Appendix A Description of the variables and faults References Chapter 2 - Canonical correlation analysis-based fault diagnosis method for dynamic processes 2.1 Introduction 2.2 Preliminaries 2.2.1 Basics of conventional CCA 2.2.2 Obtaining the positions and images in CCA 2.2.3 Details of the SVD-based technique 2.2.4 The CCA-based fault diagnosis method 2.2.5 Main steps of the CCA-based fault diagnosis method 2.3 CCA-based fault diagnosis method for dynamic processes 2.3.1 DCCA-based fault detection 2.3.2 The GRU-aided CCA fault detection method 2.4 Experimental results and analysis 2.4.1 The CSTR process 2.4.2 The TDCS process 2.5 Conclusion Acknowledgments References Chapter 3 - H∞ fault estimation for linear discrete time-varying systems with random uncertainties 3.1 Introduction 3.2 Robust fault detection for LDTV systems with multiplicative noise 3.3 Robust fault detection for LDTV systems with measurement packet loss 3.4 Fixed-lag fault estimator design for LDTV systems under an unreliable communication link 3.5 Conclusion Acknowledgments References Chapter 4 - Fault diagnosis and failure prognosis of electrical drives 4.1 Introduction 4.1.1 Operation under field orientation control 4.1.2 Operation under Direct Torque Control 4.2 What can fail and how 4.2.1 Electric power converters 4.2.2 Electrical machines 4.2.3 Capacitors 4.2.4 Batteries 4.3 Diagnosis methodology and tools 4.3.1 Signal selection 4.3.2 Signal features 4.3.3 Classification 4.4 Faults, their manifestation, and diagnosis 4.4.1 Winding faults in AC machines 4.4.2 Bearing faults 4.4.3 Insulation 4.4.4 Power electronics 4.4.5 Induction motor drives 4.4.6 PMAC drives 4.4.7 Switched reluctance machines 4.5 Failure prognosis, fault mitigation, and reliability 4.5.1 From diagnosis to prognosis 4.5.2 Prognosis tools 4.5.3 Applications and new developments 4.5.4 Decisions based on prognosis and mitigation References Chapter 5 - Intelligent fault diagnosis for dynamic systems via extended state observer and soft computing 5.1 Introduction 5.2 Extended state observer 5.2.1 ESO design 5.2.2 Estimation error convergence 5.3 Case study: three-tank dynamic system 5.4 Fault detection by means of ESO 5.4.1 Fault detection scheme 5.4.2 Fault detection without exact knowledge of the plant model 5.5 FAULT isolation and fault identification 5.5.1 Generation of reference values 5.5.2 Fault isolation by means of fuzzy inference and ESO 5.5.3 Fault identification via neural networks 5.6 Simultaneous faults of different types 5.6.1 Isolation of process faults 5.6.2 Isolation of sensor faults 5.6.3 Isolation of actuator faults 5.7 Isolation of simultaneous process faults and actuator faults 5.7.1 Characteristics of process faults and actuator faults 5.7.2 Utilizing an outflow sensor to isolate actuator faults 5.8 Conclusion and future work References Chapter 6 - Fault diagnosis and failure prognosis in hydraulic systems 6.1 Application status of sensor detection technology 6.1.1 Relevant standards of hydraulic machinery sensor detection technology 6.1.2 Instrumentation for the hydraulic turbine prototype 6.1.3 On-site detection for hydraulic turbines 6.2 Cavitation research 6.2.1 Establishment of cavitation theory 6.2.2 Numerical simulation of the cavitation mechanism 6.2.3 Cavitation model establishment and optimization 6.2.4 Engineering application of numerical simulation for cavitation flow in a hydraulic turbine 6.3 Intelligent evaluation and diagnosis technology 6.3.1 Current theoretical research hotspot 6.3.2 Commercial intelligent evaluation and fault diagnosis systems 6.3.3 Application status and deficiency of current diagnosis systems 6.4 Prognostics research 6.4.1 Prediction based on the classical linear time series model 6.4.2 Time Series Prediction Based on Intelligent Technology 6.4.3 Fuzzy time series prediction based on fuzzy set theory 6.4.4 Combination forecast References Chapter 7 - Fault detection and fault identification in marine current turbines 7.1 The HT-based detection method 7.1.1 Problem description 7.1.2 The HT-based detection method 7.1.3 Simulation results and analysis 7.2 The wavelet threshold denoising-based dectection method 7.2.1 Problem description 7.2.2 The wavelet threshold denoising-based detection method 7.2.3 Simulation results and analysis 7.2.4 Experimental results and analysis 7.3 The identification method of blade attachment based on the sparse autoencoder and softmax regression 7.3.1 Problem description 7.3.2 The recognition method based on the sparse autoencoder and softmax regression 7.3.3 Experimental results and analysis 7.4 The identification method of blade attachment based on depthwise separable CNN 7.4.1 Problem description 7.4.2 The recognition method based on depthwise separable CNN 7.4.3 Experimental analysis 7.5 Conclusion and future works References Chapter 8 - Quadrotor actuator fault diagnosis and accommodation based on nonlinear adaptive state observer 8.1 Introduction 8.2 Mathematical model of a quadrotor 8.2.1 The nonlinear quadrotor model 8.2.2 The actuator fault model 8.3 Naso-based FTC 8.3.1 The fault detection module 8.3.2 The fault diagnosis module 8.3.3 The fault accommodation module 8.4 Validation 8.4.1 Numerical simulation results 8.4.2 Flight test 8.5 Conclusion References Chapter 9 - Defect detection and classification in welding using deep learning and digital radiography 9.1 Introduction 9.1.1 Welding Process 9.1.2 Digital Radiography 9.2 Literature Review 9.3 Database Preparation 9.4 Experimental Study 9.4.1 Deep Learning Architecture 9.4.2 Training 9.4.3 Network HP Optimization 9.5 Experimental Implementation 9.6 Conclusion References Chapter 10 - Real-time fault diagnosis using deep fusion of features extracted by PeLSTM and CNN 10.1 Introduction 10.2 Basic theory 10.2.1 Convolutional neural network 10.2.2 Long short-term memory 10.3 Deep fusion of feature extracted by PeLSTM and CNN 10.3.1 2D screenshot image construction 10.3.2 The feature fusion algorithm based on CNN and PeLSTM 10.4 Experimental testing 10.4.1 Rolling bearing test and analysis 10.4.2 Gearbox test and analysis 10.5 Conclusion and future work Acknowledgment References Index Back cover