دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2020
نویسندگان: Ke Zhang
سری:
ISBN (شابک) : 981155742X, 9789811557422
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 263
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 16 مگابایت
در صورت تبدیل فایل کتاب Failure Mechanism and Stability Analysis of Rock Slope: New Insight and Methods به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مکانیسم شکست و تجزیه و تحلیل پایداری شیب سنگ: بینش و روشهای جدید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب پوشش عمیقی از آزمایشهای آزمایشگاهی، نظریهها، تکنیکهای مدلسازی و شیوههای تحلیل و طراحی شیبهای سنگی در تنظیمات پیچیده زمینشناسی را ارائه میکند. این به مفاهیم جدید در ارتباط با روش عنصر سینماتیکی، روش عنصر سینماتیکی ناپیوستگی، روش تعادل تصادفی غار کارست یکپارچه، روش کاهش مقاومت بهبود یافته، و روش مکانیک شکست، با در نظر گرفتن ویژگیهای زمینشناسی مربوطه میپردازد. این کتاب عمدتاً به عنوان یک راهنمای مرجع برای متخصصان مهندسی ژئوتکنیک و زمین شناسی مهندسی و به عنوان یک کتاب درسی برای دوره های تحصیلات تکمیلی مرتبط در نظر گرفته شده است.
This book presents in-depth coverage of laboratory experiments, theories, modeling techniques, and practices for the analysis and design of rock slopes in complex geological settings. It addresses new concepts in connection with the kinematical element method, discontinuity kinematical element method, integrated karst cave stochastic model-limit equilibrium method, improved strength reduction method, and fracture mechanics method, taking into account the relevant geological features. The book is chiefly intended as a reference guide for geotechnical engineering and engineering geology professionals, and as a textbook for related graduate courses.
Preface About This Book Contents About the Author List of Figures List of Tables 1 Introduction 1.1 Background 1.2 Crack Propagation and Coalescence in Rocks 1.3 Numerical Methods of Rock Slope Stability Analysis 1.3.1 Limit Equilibrium Method 1.3.2 Numerical Techniques and Strength Reduction Method 1.3.3 Fracture Mechanics Method 1.4 Main Contents in This Book References Part IExperimental Studies on Shear Failure Mechanism of Rock Masses 2 Influence of Flaw Inclination on Shear Fracturing and Fractal Behavior 2.1 Experimental Studies 2.1.1 Specimen Preparation 2.1.2 Testing Equipment 2.1.3 Physical Implications of Shear-Box Test 2.2 Patterns of Crack Propagation and Coalescence 2.2.1 Tensile Cracks 2.2.2 Shear Cracks 2.2.3 Coalescence 2.3 Peak Shear Strength of Flawed Specimens 2.3.1 Role of Shear-Normal Stress Ratio 2.3.2 Role of Flaw Inclination 2.4 Fractal Characteristics of the Fragmentation 2.4.1 Sieve Test Analysis 2.4.2 Calculation of Fractal Dimension 2.4.3 Results and Discussions 2.5 Conclusions References 3 Influence of Flaw Density on Shear Fracturing and Fractal Behavior 3.1 Experimental Studies 3.1.1 The 1991 Randa Rockslide and Conceptual Rock Bridge Model 3.1.2 Specimen Preparation 3.1.3 Experimental Setup and Results 3.2 Numerical Shear-Box Tests with the RFPA Model 3.3 Shear Fracturing Behavior of Rock Bridges 3.3.1 Mechanical Behavior of Crack Initiation 3.3.2 Mechanical Behavior of Crack Propagation and Coalescence 3.3.3 Peak Shear Strength of Specimens 3.3.4 Discussion 3.4 Fractal Characteristics of the Shear Fracture Surface 3.4.1 Digital Image Processing 3.4.2 Box-Counting Fractal Dimension 3.4.3 Results and Discussion 3.5 Conclusions References Part IILarge-Scale, Global Failure Mechanism and Stability Analysis 4 Empirical Methods for Estimating Strength Parameters of Jointed Rock Masses 4.1 Methods Relating Strength with RQD 4.2 Methods Relating Strength with Q 4.3 Methods Relating Strength with RMR 4.4 Methods Relating Strength with Hoek-Brown Failure Criterion and GSI References 5 Kinematical Element Method 5.1 Kinematical Element Formulation Subjected to Seismic Loading and Water 5.1.1 Generation and Discretization of a Plastic Sliding Zone 5.1.2 Kinematics Analysis 5.1.3 Static Analysis 5.1.4 Factor of Safety Computation 5.1.5 Optimization 5.2 Numerical Studies and Verification 5.2.1 Example 1 5.2.2 Example 2 5.2.3 Example 3 5.2.4 Influence of Vertical and Inclined Inter-Element Boundaries 5.3 Blasting Effect on Slope Stability and Example Analysis 5.4 Seismic Stability Charts for Slopes 5.4.1 Seismic Stability Charts for Preliminary Analysis 5.4.2 Back Analysis Based on Seismic Stability Charts 5.5 Rigorous Back Analysis 5.5.1 Theoretical Background 5.5.2 Back Analysis Procedure 5.5.3 Example Analysis 5.6 Reliability Analysis 5.6.1 Theoretical Background 5.6.2 Example Analysis 5.7 Conclusions References 6 Integrated Karst Cave Stochastic Model-Limit Equilibrium Method 6.1 Engineering Background 6.1.1 Study Site 6.1.2 Stratigraphy 6.1.3 Karst Data Collection 6.2 A Monte Carlo Simulation to Generate a Karst Cave Stochastic Model 6.2.1 General Description 6.2.2 A Stochastic Representation of the Length of a Karst Cave 6.2.3 A Stochastic Representation for the Length of Carbonatite 6.2.4 Karst Cave Stochastic Model Generator 6.3 Integrated Methodology for Stability Analysis 6.3.1 Stability Analysis Procedure 6.3.2 Numerical Model of Open Pit Slope 6.3.3 Results and Discussions 6.4 Optimization Design of the Slope Angle 6.4.1 Optimization Procedure 6.4.2 Results and Discussions 6.5 Conclusions References 7 Strain-Softening Behavior and Strength Reduction Method 7.1 Progressive Failure and Improved Strength Reduction Method 7.1.1 Strain-Softening Behavior 7.1.2 Strain-Softening Model and Strength Reduction Method 7.2 Numerical Study and Verification 7.3 Progressive Failure Analysis 7.4 Parameters Analysis 7.4.1 Effect of Residual Shear Strain Threshold 7.4.2 Effect of Elastic Modulus 7.4.3 Effect of Poisson’s Ratio and Dilation Angle 7.5 Application 7.6 Conclusions References 8 Three-Dimensional Effect and Strength Reduction Method 8.1 Three-Dimensional Effect of Boundary Conditions 8.2 Three-Dimensional Effect of Strength Parameters 8.3 Stability Charts for Three-Dimensional Slope 8.3.1 Development of Stability Charts 8.3.2 Numerical Results 8.3.3 Numerical Studies and Verification 8.3.4 Three-Dimensional Effect of Concentrated Surcharge Load 8.4 Calculation Procedure for Slope Stability Analysis 8.5 Conclusions References Part IIIStructurally-Controlled Failure Mechanism and Stability Analysis 9 Discontinuity Kinematical Element Method 9.1 Discontinuity Kinematical Element Formulation with Major Geological Discontinuities 9.1.1 Generation of a Failure Mass 9.1.2 Kinematics Analysis 9.1.3 Static Analysis 9.1.4 Optimization 9.2 Numerical Studies and Verification 9.2.1 Example 1 9.2.2 Example 2 9.2.3 Example 3 9.2.4 Effect of Number of Sub-Elements 9.3 Rock Slope with Non-Persistent Discontinuities 9.3.1 Effect of Location of Rock Bridge 9.3.2 Effect of Discontinuity Persistence 9.3.3 Application 9.4 Conclusions References 10 Joint Element and Strength Reduction Method 10.1 Engineering Background 10.2 Discontinuity Modelling in DDM 10.2.1 Theoretical Formulation 10.2.2 Joint Element 10.2.3 Stress Intensity Factor 10.2.4 Verification 10.3 Modeling of Failure Initiation 10.3.1 Application of the DDM Code in Numerical Models 10.3.2 Results and Discussions 10.4 Discontinuity Modelling in FLAC3D 10.4.1 Interface Element 10.4.2 Solid Element with Low Strength 10.4.3 New Joint Element 10.5 Modelling of Progressive Failure 10.5.1 FLAC3D Numerical Model 10.5.2 Results and Discussions 10.6 Role of Joint Inclination on Slope Stability 10.7 Conclusions References 11 Fracture Mechanics Method 11.1 Engineering Background 11.1.1 Study Site 11.1.2 Geological Model 11.1.3 Numerical Model 11.2 Theoretical Formulation 11.2.1 Fracture Criterion 11.2.2 Definition of Factor of Safety 11.3 Modeling Fracture Behavior 11.4 Role of Joint Geometry Parameters on Slope Stability 11.4.1 Effect of Joint Inclination 11.4.2 Effect of Joint Length 11.4.3 Effect of Joint Location 11.5 Evolution of Slopes Subject to Weathering 11.5.1 Quantification of Weathering 11.5.2 Determination of Critical Notch Depth 11.5.3 Prediction of Failure-Time 11.5.4 Discussions 11.6 Conclusions References