ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Extractive Metallurgy of Copper

دانلود کتاب متالورژی استخراجی مس

Extractive Metallurgy of Copper

مشخصات کتاب

Extractive Metallurgy of Copper

ویرایش: [6 ed.] 
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 0128218754, 9780128218754 
ناشر: Elsevier 
سال نشر: 2021 
تعداد صفحات: 590
[573] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 35 Mb 

قیمت کتاب (تومان) : 33,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 2


در صورت تبدیل فایل کتاب Extractive Metallurgy of Copper به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب متالورژی استخراجی مس نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب متالورژی استخراجی مس

متالورژی استخراجی مس، ویرایش ششم، نسخه‌های قبلی را شامل بخش‌هایی درباره کوه‌زایی و کانی‌شناسی مس و فرآیندهای جدید برای بازیابی مؤثر مس از ذخایر معدنی درجه مس در حال کاهش است. این کتاب فرآیندهای حفظ عیار مس کنسانتره را از سنگ معدن های عیار پایین تر ارزیابی می کند. بخش‌ها بازیابی محصولات جانبی حیاتی (مانند سزیم)، سلامت و ایمنی کارگران، اتوماسیون به‌عنوان یک ابزار ایمنی، و نیروهای ژئوپلیتیکی که تولید فلز مس را به آسیا (به‌ویژه چین) منتقل کرده‌اند و فرآیندهای جدید ذوب و پالایش را پوشش می‌دهد. فرآیندهای ذوب بومی آسیا، همراه با نیازهای انرژی و آب، عملکرد زیست محیطی، فرآیندهای پالایش الکتریکی مس، و فرآیندهای جذب دی اکسید گوگرد (به عنوان مثال، WSA) ارزیابی می‌شوند. این کتاب تاکید ویژه ای بر مزایای بازیافت ضایعات مس از نظر انرژی و آب مورد نیاز دارد. همچنین برای نشان دادن مفاهیم گنجانده شده، مقایسه‌های انتشار کربن سنگ به محصول و ضایعات به محصول انجام شده است. کانی شناسی، استخراج و تکنیک های بهره برداری مس را تشریح می کند انواع فن آوری های استخراج، ذوب و تبدیل را با هم مقایسه می کند شرح کاملی از فرآیندهای هیدرومتالورژی و الکترومتالورژیکی، از جمله گزینه های فرآیند و بهبودهای اخیر ارائه می دهد. فن آوری های پالایش


توضیحاتی درمورد کتاب به خارجی

Extractive Metallurgy of Copper, Sixth Edition, expands on previous editions, including sections on orogenesis and copper mineralogy and new processes for efficiently recovering copper from ever-declining Cu-grade mineral deposits. The book evaluates processes for maintaining concentrate Cu grades from lower grade ores. Sections cover the recovery of critical byproducts (e.g., cesium), worker health and safety, automation as a safety tool, and the geopolitical forces that have moved copper metal production to Asia (especially China) and new smelting and refining processes. Indigenous Asian smelting processes are evaluated, along with energy and water requirements, environmental performance, copper electrorefining processes, and sulfur dioxide capture processes (e.g., WSA). The book puts special emphasis on the benefits of recycling copper scrap in terms of energy and water requirements. Comparisons of ore-to-product and scrap-to-product carbon emissions are also made to illustrate the concepts included. Describes copper mineralogy, mining and beneficiation techniques Compares a variety of mining, smelting and converting technologies Provides a complete description of hydrometallurgical and electrometallurgical processes, including process options and recent improvements Includes comprehensive descriptions of secondary copper processing, including scrap collection and upgrading, melting and refining technologies



فهرست مطالب

Cover
Extractive Metallurgy of Copper
Copyright
CONTENTS
Preface to the sixth edition
1. Overview
	1.1 Introduction
	1.2 Ore–rock differentiation in the mine
	1.3 Extracting copper from copper–iron–sulfide ores
		1.3.1 Concentration by froth flotation
		1.3.2 Matte smelting
		1.3.3 Converting
			1.3.3.1 Peirce–Smith converting
		1.3.4 Direct-to-copper smelting
		1.3.5 Fire refining and electrorefining of blister copper
	1.4 Hydrometallurgical extraction of copper
		1.4.1 Solvent extraction
		1.4.2 Electrowinning
	1.5 Melting and casting cathode copper
		1.5.1 Types of copper product
	1.6 Recycle of copper and copper alloy scrap
	1.7 Safety
	1.8 Environment
	1.9 Summary
	References
	Suggested reading
	Further reading
2. Production and use
	2.1 Properties and uses of copper
	2.2 Global copper production
	2.3 Copper minerals, mines, and cut-off grades
	2.4 Locations of processing plants
		2.4.1 Smelters
		2.4.2 Electrorefineries
		2.4.3 Hydrometallurgical plants
	2.5 Price of copper
	2.6 Future outlook
	2.7 Summary
	References
3. Production of high copper concentrates—comminution and flotation (Johnson et al., 2019)
	3.1 Concentration flowsheet
	3.2 The comminution process
		3.2.1 Crushing
		3.2.2 Grinding
			3.2.2.1 Grind size and liberation of copper minerals
			3.2.2.2 Grinding equipment
			3.2.2.3 Autogenous and semiautogenous mills
			3.2.2.4 Ball mills (Giblett, 2019)
			3.2.2.5 HPGR
	3.3 Particle size control of flotation feed
		3.3.1 Instrumentation and control
			3.3.1.1 Particle-size control
			3.3.1.2 Ore throughput control
		3.3.2 Automated mineralogical analysis
	3.4 Froth flotation fundamentals
	3.5 Flotation chemicals (Nagaraj et al., 2019; Woodcock et al., 2007)
		3.5.1 Collectors
		3.5.2 Selectivity in flotation
		3.5.3 Differential flotation modifiers
		3.5.4 Frothers
	3.6 Flotation of Cu ores
	3.7 Flotation cells
		3.7.1 Column cells
	3.8 Flotation process control
		3.8.1 Continuous chemical analysis of process streams
		3.8.2 Machine vision systems
	3.9 Flotation product processing
		3.9.1 Thickening and dewatering
		3.9.2 Tailings
	3.10 Other flotation separations
		3.10.1 Gold flotation
	3.11 Summary
	References
	Suggested reading
4. Pyrometallurgical processing of copper concentrates
	4.1 Fundamental thermodynamic aspects associated with pyrometallurgical copper processing
	4.2 The Yazawa diagram and pyrometallurgical copper processing
	4.3 Smelting: the first processing step
		4.3.1 Slag phase: FeO–Fe2O3–SiO2 system
		4.3.2 Calcium ferrite and olivine slags systems
		4.3.3 Matte (Sundström et al., 2008)
		4.3.4 Off-gas
	4.4 The copper converting process
		4.4.1 Reactions involved in batch converting
		4.4.2 Reactions involved in continuous converting
	4.5 The refining process
	4.6 Minor elements
		4.6.1 Deportment of minor elements
		4.6.2 Recovery of minor elements
			4.6.2.1 Dust leaching
			4.6.2.2 Removal of impurities from the electrolyte
			4.6.2.3 Neutralization of effluents of the acid plant
			4.6.2.4 Removal and recovery from copper anode slimes
	4.7 Summary
	References
	Suggested reading
5. Theory to practice: pyrometallurgical industrial processes
	5.1 General considerations
	5.2 Technology evolution since 1970
	5.3 Copper making technology classification
	5.4 Evolution to large-scale smelting
	5.5 Chinese technology developments since 2000
	5.6 Summary
	References
	Suggested readings
6. Flash smelting (Davenport et al., 2001)
	6.1 Metso Outotec flash furnace
		6.1.1 Construction details (Fagerlund et al., 2010)
		6.1.2 Cooling jackets
		6.1.3 Concentrate burner (Fig. 6.2)
		6.1.4 Supplementary hydrocarbon fuel burners
		6.1.5 Matte and slag tapholes
	6.2 Peripheral equipment
		6.2.1 Concentrate blending system
		6.2.2 Solids feed dryer
		6.2.3 Bin and feed system
		6.2.4 Oxygen plant
		6.2.5 Blast heater (optional)
		6.2.6 Waste heat boiler
		6.2.7 Dust recovery and recycle system
	6.3 Flash furnace operation
		6.3.1 Startup and shutdown
		6.3.2 Steady-state operation
	6.4 Control
		6.4.1 Concentrate throughput rate and matte grade controls
		6.4.2 Slag composition control
		6.4.3 Temperature control
		6.4.4 Reaction shaft and hearth control (Davenport et al., 2001)
	6.5 Impurity behavior
		6.5.1 Nonrecycle of impurities in dust
		6.5.2 Other industrial methods of controlling impurities
	6.6 Outotec flash smelting recent developments and future trends
	6.7 Inco flash smelting
		6.7.1 Furnace details
		6.7.2 Concentrate burner
		6.7.3 Water cooling
		6.7.4 Matte and slag tapholes
		6.7.5 Gas uptake
		6.7.6 Auxiliary equipment
		6.7.7 Solids feed dryer (Carr et al., 1997)
		6.7.8 Concentrate burner feed system
		6.7.9 Off-gas cooling and dust recovery systems (Humphris et al., 1997)
	6.8 Inco flash furnace summary
	6.9 Inco versus Outotec flash smelting
	6.10 Summary
	References
	Further reading
7. Bath matte smelting processes
	7.1 Submerged tuyere: Noranda and Teniente processes
		7.1.1 Noranda process (Prevost et al., 2007; Zapata, 2007)
		7.1.2 Reaction mechanisms
		7.1.3 Separation of matte and slag
		7.1.4 Impurity behavior
		7.1.5 Scrap and residue smelting
		7.1.6 Operation and control
		7.1.7 Control (Zapata, 2007)
		7.1.8 Production rate enhancement
	7.2 Teniente smelting
		7.2.1 Process description
		7.2.2 Steady operation and process control
			7.2.2.1 Temperature control
			7.2.2.2 Slag and matte composition control
			7.2.2.3 Matte and slag depth control
		7.2.3 Impurity distribution
		7.2.4 Campaign life and hot tuyere repairing
		7.2.5 Furnace cooling
		7.2.6 Off-gas heat recovery
	7.3 Vanyukov submerged tuyere smelting
		7.3.1 Stationary furnace
		7.3.2 Operational challenges at Balkhash smelter (Ospanov, 2020)
	7.4 Top Submerged Lance
		7.4.1 Basic operations
		7.4.2 Feed materials
		7.4.3 The TSL furnace and lances
		7.4.4 Smelting mechanisms
		7.4.5 Impurity elimination
		7.4.6 Startup and shutdown
	7.5 Chinese bath smelting technology developments: SKS-BBS process and side-blow smelting
		7.5.1 SKS-BBS process
		7.5.2 SKS-BBS reaction mechanisms
		7.5.3 SKS-BBS refractory campaign
		7.5.4 SKS-BBS lances (Bin and Suping, 2019; Li, 2016; Xiaohong, Kefei, Shuangjie, & Xin, 2016)
		7.5.5 SKS-BBS operating parameters
		7.5.6 SKS-BBS minor elements distribution (Li, 2016; Lile et al., 2016)
		7.5.7 Side-blown smelting process (Wang, Liu, Yang, Tang, & Liao, 2019)
		7.5.8 Baijin and Jifeng SBF furnace design
		7.5.9 Baijin and Jifeng SBF typical operating parameters
	7.6 Concluding remarks
		7.6.1 Tuyere lance processes
		7.6.2 TSL processes
	References
	Suggested reading
8. Converting of copper matte
	8.1 Introduction
	8.2 Technology options for batch and continuous copper converting
	8.3 Batch converting
		8.3.1 Batch converting chemistry
		8.3.2 Copper making reactions
		8.3.3 Elimination of impurities during converting
	8.4 Industrial Peirce–Smith converting operations
		8.4.1 Tuyeres
		8.4.2 Offgas collection
		8.4.3 Temperature control
		8.4.4 Choice of temperature
		8.4.5 Temperature measurement
		8.4.6 Slag and flux control
		8.4.7 Slag formation rate
		8.4.8 End point determinations
			8.4.8.1 Slag blow
			8.4.8.2 Copper blow
	8.5 Batch converting of high matte grades
	8.6 Oxygen enrichment of Peirce–Smith converter blast
	8.7 Maximizing converter productivity
		8.7.1 Maximizing solids melting
		8.7.2 Smelting concentrates in the converter
		8.7.3 Maximizing campaign life
	8.8 Recent improvements in Peirce–Smith converting
		8.8.1 Shrouded sonic injection (Kapusta, 2019a)
		8.8.2 Scrap injection
		8.8.3 Converter shell design
		8.8.4 Improvements to batch productivity
	8.9 Alternatives to Peirce–Smith converting
		8.9.1 Hoboken converter
		8.9.2 Flash converting (Fig. 8.15; Table 8.8)
			8.9.2.1 Chemistry
		8.9.3 Choice of calcium ferrite slag
		8.9.4 No matte layer
			8.9.4.1 Productivity
			8.9.4.2 Flash converting summary
		8.9.5 Submerged tuyere Noranda continuous converting
			8.9.5.1 Chemical reactions
			8.9.5.2 Reaction mechanisms
			8.9.5.3 Silicate slag
			8.9.5.4 Control
			8.9.5.5 Noranda converting summary
	8.10 Top submerged lance converting
		8.10.1 Metso Outotec Ausmelt converting (Wood & Hughes, 2016)
		8.10.2 Glencore Technology ISASMELT™ batch converting and ISACONVERT™ continuous converting
	8.11 Chinese continuous converting technologies
		8.11.1 Bottom blowing converting
		8.11.2 Top-blown multilance continuous converting technology
	8.12 Summary
	References
	Suggested reading
9. Continuous copper making processes
	9.1 Single-stage process: direct to blister flash process
		9.1.1 Advantages and disadvantages
		9.1.2 The ideal direct-to-copper process
		9.1.3 Industrial single furnace direct-to-copper smelting
		9.1.4 Chemistry
		9.1.5 Effect of slag composition on %Cu in slag
		9.1.6 Industrial details
		9.1.7 Control
		9.1.8 Electric furnace Cu-from-slag recovery
			9.1.8.1 Glogów
			9.1.8.2 Olympic Dam
		9.1.9 Cu-in-slag limitation of direct-to-copper smelting
		9.1.10 Direct-to-copper impurities
	9.2 Two-stage process: Dongying-Fangyuan process
		9.2.1 General process description (Wang, Cui, Wei, & Wang, 2017; Wang, Zhixiang, Wang, Cui, & Huang, 2019)
		9.2.2 Dongying-Fangyuan process and plant technical description
			9.2.2.1 SLS smelting furnace
			9.2.2.2 SLCR converting–refining furnace
		9.2.3 SLS-SLCR process control
	9.3 The Mitsubishi process: introduction (Mitsubishi Materials, 2020)
		9.3.1 The Mitsubishi process
		9.3.2 Smelting furnace details
		9.3.3 Electric slag cleaning furnace details
		9.3.4 Converting furnace details
			9.3.4.1 Converting furnace slag
			9.3.4.2 Converting furnace copper
		9.3.5 Optimum matte grade
		9.3.6 Process control in Mitsubishi smelting/converting (Goto & Hayashi, 1998)
		9.3.7 The Mitsubishi process since 2000
	9.4 Other developments for continuous processing of copper
		9.4.1 Double bottom bottom–blowing continuous smelting process (SKS-BCC) (Yongcheng et al., 2019)
		9.4.2 Side-blowing smelting technology combined with horizontal bottom blowing converting
	9.5 Summary
		9.5.1 Single-stage copper production
		9.5.2 Two-stage copper production
		9.5.3 Three-stage copper production
	References
	Suggested reading
	Further reading
10. Copper loss in slag
	10.1 Copper in slags
	10.2 Decreasing copper in slag I: minimizing slag generation
	10.3 Decreasing copper in slag II: minimizing Cu concentration in slag
	10.4 Decreasing copper in slag III: pyrometallurgical slag settling/reduction
	10.5 Decreasing copper in slag IV: slag minerals processing
	10.6 Summary
	References
11. Capture and fixation of sulfur (King et al., 2013)
	11.1 Off-gases from smelting and converting processes
		11.1.1 Sulfur capture efficiencies
	11.2 Sulfuric acid manufacture
	11.3 Smelter off-gas treatment
		11.3.1 Gas cooling and heat recovery
		11.3.2 Electrostatic precipitation of dust
		11.3.3 Water quenching, scrubbing, and cooling
		11.3.4 Mercury removal
		11.3.5 The quenching liquid, acid plant blowdown
	11.4 Gas drying
		11.4.1 Drying tower (Hanekom, 2017)
			11.4.1.1 Optimum absorbing and composition
		11.4.2 Main acid plant blowers
	11.5 Acid plant chemical reactions
		11.5.1 Oxidation of SO2 to SO3
			11.5.1.1 Catalyst reactions
			11.5.1.2 Industrial V2O5–K2SO4 catalysts (Fig. 11.4)
			11.5.1.3 Catalyst ignition and degradation temperatures
			11.5.1.4 Cs-promoted catalyst
			11.5.1.5 Dust accumulation in catalyst beds
			11.5.1.6 SO2 → SO3 conversion equilibrium curve
			11.5.1.7 Absorption of SO3 into H2SO4–H2O solution
			11.5.1.8 Optimum absorbing acid composition
	11.6 Industrial sulfuric acid manufacture (Tables 11.4–11.6)
		11.6.1 Catalytic converter
		11.6.2 SO2 → SO3 conversion reaction paths
		11.6.3 Reaction path characteristics
		11.6.4 Absorption towers
		11.6.5 Gas to gas heat exchangers and acid coolers
		11.6.6 Grades of product acid
	11.7 Alternative sulfuric acid manufacturing methods
		11.7.1 Haldor Topsøe WSA
		11.7.2 Sulfacid
	11.8 Recent and future developments in sulfuric acid manufacture
		11.8.1 Maximizing feed gas SO2 concentrations
		11.8.2 Maximizing heat recovery
	11.9 Alternative sulfur products
	11.10 Summary
	References
	Suggested reading
	Further reading
12. Fire refining (S and O removal) and anode casting
	12.1 Industrial methods of fire refining
		12.1.1 Rotary furnace refining
		12.1.2 Hearth furnace refining (Alarcon, 2005)
	12.2 Chemistry of fire refining
		12.2.1 Sulfur removal: the Cu–O–S system
		12.2.2 Oxygen removal: the Cu–C–H–O system
	12.3 Choice of hydrocarbon for deoxidation
	12.4 Minor metals removal
		12.4.1 Fundamentals of minor element removal
	12.5 Casting anodes
		12.5.1 Anode molds
		12.5.2 Anode uniformity
		12.5.3 Anode preparation
	12.6 Continuous anode casting (Hazelett, 2019)
	12.7 New anodes from rejects and anode scrap
	12.8 Summary
	References
	Suggested reading
13. Electrolytic refining
	13.1 The electrorefining process
	13.2 Chemistry of electrorefining and behavior of anode impurities
		13.2.1 Au, Ag, and platinum-group metals
		13.2.2 Se and Te
		13.2.3 Pb and Sn
		13.2.4 As, Bi, Co, Fe, Ni, S, and Sb
		13.2.5 O
		13.2.6 Slimes
	13.3 Equipment
		13.3.1 Anodes
		13.3.2 Cathodes
		13.3.3 Cells
		13.3.4 Electrical components
	13.4 Typical refining cycle
	13.5 Electrolyte
		13.5.1 Electrolyte additives
			13.5.1.1 Leveling agents
			13.5.1.2 Grain-refining agents
		13.5.2 Electrolyte temperature
		13.5.3 Electrolyte filtration
	13.6 Maximizing cathode copper purity
		13.6.1 Physical factors affecting cathode purity
		13.6.2 Chemical factors affecting cathode purity
		13.6.3 Electrical factors affecting cathode purity
	13.7 Minimizing energy consumption and maximizing current efficiency
	13.8 Treatment of electrolyte bleed
	13.9 Treatment of slimes
	13.10 Industrial electrorefining
	13.11 Recent developments and emerging trends in copper electrorefining
	13.12 Summary
	References
	Suggested reading
14. Hydrometallurgical copper extraction: introduction and leaching
	14.1 Copper recovery by hydrometallurgical flowsheets
	14.2 Chemistry of the leaching of copper minerals
		14.2.1 Leaching of copper oxide minerals
		14.2.2 Leaching of copper sulfide minerals
	14.3 Leaching methods
	14.4 Heap leaching
		14.4.1 Chemistry of heap leaching
			14.4.1.1 Oxidation by Fe3+
			14.4.1.2 Bacterial action
			14.4.1.3 Effect of chloride
			14.4.1.4 Rate of leaching
		14.4.2 Industrial heap leaching
			14.4.2.1 Construction of a heap
			14.4.2.2 Impermeable base
			14.4.2.3 Pretreatment of the ore
			14.4.2.4 Stacking of ore on heap
			14.4.2.5 Aeration of heap
			14.4.2.6 Irrigation of heap
			14.4.2.7 Optimum leaching conditions
			14.4.2.8 Collection of PLS
	14.5 Dump leaching
	14.6 Vat leaching
	14.7 Agitation leaching
		14.7.1 Oxide minerals
		14.7.2 Sulfide minerals
	14.8 Pressure oxidation leaching
		14.8.1 High-temperature high-pressure oxidation leaching
		14.8.2 Medium-temperature medium-pressure oxidation leaching
	14.9 In situ leaching
	14.10 Hydrometallurgical processing of chalcopyrite concentrates
	14.11 Future developments
	14.12 Summary
	References
	Suggested reading
15. Solvent extraction
	15.1 The solvent extraction process
	15.2 Chemistry of copper solvent extraction
	15.3 Composition of the organic phase
		15.3.1 Extractants
		15.3.2 Diluents
	15.4 Equipment
		15.4.1 Mixer designs
		15.4.2 Settler designs
	15.5 Circuit configurations
		15.5.1 Series circuit
		15.5.2 Parallel and series–parallel circuits
		15.5.3 Inclusion of a wash stage
	15.6 Quantitative design of a series circuit
		15.6.1 Determination of extractant concentration required
		15.6.2 Determination of extraction and stripping isotherms
		15.6.3 Determination of extraction efficiency
		15.6.4 Determination of equilibrium stripped organic Cu concentration
		15.6.5 Transfer of Cu extraction into organic phase
		15.6.6 Determination of electrolyte flowrate required to strip Cu transferred
		15.6.7 Alternative approach
	15.7 Quantitative comparison of series and series−parallel circuits
	15.8 Minimizing impurity transfer and maximizing electrolyte purity
		15.8.1 Coextraction of impurities
		15.8.2 Transfer of impurities to electrolyte by entrainment
		15.8.3 Crud
	15.9 Operational considerations
		15.9.1 Stability of operation
		15.9.2 Phase continuity
		15.9.3 Organic health, losses, and recovery
	15.10 Industrial solvent extraction plants
	15.11 Safety in solvent extraction plants
	15.12 Current and future developments
		15.12.1 Extractants
		15.12.2 Equipment
	15.13 Summary
	References
	Suggested reading
16. Electrowinning
	16.1 The electrowinning process
	16.2 Chemistry of copper electrowinning
	16.3 Electrical requirements
	16.4 Equipment
		16.4.1 Cathodes
		16.4.2 Anodes
			16.4.2.1 Lead alloy anodes
			16.4.2.2 Coated titanium anodes
		16.4.3 Cell design
	16.5 Operational practice
		16.5.1 Current density
		16.5.2 Electrolyte
			16.5.2.1 Organic contamination
			16.5.2.2 Conductivity
			16.5.2.3 Effect of iron
			16.5.2.4 Effect of manganese
			16.5.2.5 Effects of other metal contaminants
			16.5.2.6 Effect of chloride
			16.5.2.7 Control of impurities
		16.5.3 Electrolyte additives
			16.5.3.1 Smoothing agents and grain refiners
			16.5.3.2 Cobalt sulfate
		16.5.4 Acid mist suppression
	16.6 Maximizing copper quality
		16.6.1 Copper purity
		16.6.2 Physical appearance
	16.7 Maximizing energy efficiency
	16.8 Modern industrial electrowinning plants
	16.9 Direct electrowinning from agitated leach solutions
		16.9.1 From ore leach solutions
		16.9.2 From concentrate or matte leach solutions
	16.10 Copper electrowinning in EMEW cells
	16.11 Safety in electrowinning tankhouses
	16.12 Future developments
	16.13 Summary
	References
	Suggested reading
17. Collection and processing of recycled copper
	17.1 The materials cycle
		17.1.1 Home scrap
		17.1.2 New scrap
		17.1.3 Old scrap
	17.2 Secondary copper grades and definitions
	17.3 Scrap processing and beneficiation
		17.3.1 Wire and cable processing
		17.3.2 Automotive copper recovery (ELV)
		17.3.3 Electronic scrap treatment
	17.4 Summary
	References
18. Chemical metallurgy of copper recycling
	18.1 Characteristics of secondary copper
	18.2 Scrap processing in primary copper smelters
		18.2.1 Scrap use in smelting furnaces
		18.2.2 Scrap additions to converters and anode furnaces
	18.3 The secondary copper smelter
		18.3.1 High-grade secondary smelting
		18.3.2 Smelting to black copper
		18.3.3 Converting black copper
		18.3.4 Fire refining and electrorefining
	18.4 Summary
	References
19. Melting and casting
	19.1 Product grades and quality
	19.2 Melting technology
		19.2.1 Furnace types
		19.2.2 Hydrogen and oxygen measurement/control
	19.3 Casting machines
		19.3.1 Billet casting
		19.3.2 Bar and rod casting
		19.3.3 Oxygen-free copper casting
		19.3.4 Strip casting
	19.4 Summary
	References
	Suggested reading
20. Byproduct and waste streams
	20.1 Molybdenite recovery and processing
		20.1.1 Flotation reagents
		20.1.2 Operation
		20.1.3 Optimization
	20.2 Anode slimes
		20.2.1 Anode slime composition
		20.2.2 The slime treatment flowsheet
	20.3 Dust treatment
	20.4 Use or disposal of slag (Gorai et al., 2003)
	20.5 Summary
	References
21. Costs of copper production
	21.1 Overall investment costs: mine through refinery
		21.1.1 Variation in investment costs
		21.1.2 Economic sizes of plants
	21.2 Overall direct operating costs: mine through refinery
		21.2.1 Variations in direct operating costs
	21.3 Total production costs, selling prices, profitability
		21.3.1 Byproduct credits
	21.4 Concentrating costs
	21.5 Smelting costs
	21.6 Electrorefining costs
	21.7 Production of copper from scrap
	21.8 Leach/solvent extraction/electrowinning costs
	21.9 Profitability
	21.10 Summary
	References
22. Toward a sustainable copper processing
	22.1 Resource complexity and flowsheet solutions
	22.2 Multimetal flowsheet integration
		22.2.1 Primary base metal integration: the Ust-Kamenogorsk metallurgical complex
		22.2.2 Primary and urban mining integration: Japanese industrial examples
		22.2.3 European examples of integration
	22.3 Concluding remarks
	References
	Suggested readings
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
Backcover




نظرات کاربران