دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Mohamed Lahby (editor), Utku Kose (editor), Akash Kumar Bhoi (editor) سری: ISBN (شابک) : 1032001127, 9781032001128 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 361 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Explainable Artificial Intelligence for Smart Cities به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی قابل توضیح برای شهرهای هوشمند نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
به لطف پیشرفتهای سریع فناوری از نظر هوش محاسباتی، ابزارهای هوشمند نقشهای فعالی را در زندگی روزمره ایفا میکنند. واضح است که قرن بیست و یکم مزایای زیادی در استفاده از محاسبات سطح بالا و راه حل های ارتباطی برای مقابله با مشکلات دنیای واقعی به همراه داشته است. با این حال، فناوری های بیشتر تغییرات بیشتری را در جامعه به ارمغان می آورد. از این نظر، مفهوم شهرهای هوشمند از نظر جامعه و تلاشهای پژوهشی مبتنی بر هوش مصنوعی به طور گسترده مورد بحث قرار گرفته است. ظهور شهرهای هوشمند تغییری در عادات استفاده از فناوری و جامعه است و جهت گیری های تحقیقاتی مختلفی برای شکل دادن به آینده ای بهتر وجود دارد.
هدف این کتاب تمرکز بر هوش مصنوعی قابل توضیح (XAI) است. ) در توسعه شهر هوشمند. همانطور که اخیراً طراحی شده است، سیستمهای هوشمند پیشرفته نیاز به استفاده شدید از راهحلهای محاسباتی پیچیده (مانند یادگیری عمیق، دادههای بزرگ، معماریهای اینترنت اشیا) دارند، مکانیسمهای این سیستمها برای کاربران به «جعبه سیاه» تبدیل میشوند. از آنجایی که این بدان معنی است که هیچ سرنخ روشنی در مورد آنچه در این سیستم ها می گذرد وجود ندارد، نگرانی ها در مورد اطمینان از ابزارهای قابل اعتماد نیز افزایش می یابد. در سالهای اخیر، تلاشهایی برای حل این مشکل با استفاده بیشتر از روشهای XAI برای بهبود سطوح شفافیت صورت گرفته است. این کتاب یک منبع مرجع جهانی و به موقع در مورد تلاش های تحقیقاتی پیشرفته برای اطمینان از عامل XAI در تحولات شهر محور هوشمند ارائه می دهد. این کتاب شامل نتایج مثبت و منفی، و همچنین بینشهای آینده و جنبههای اجتماعی و فنی تلاشهای تحقیقاتی شهر هوشمند مبتنی بر XAI است.
این کتاب شامل نوزده مقاله است که با ارائه پیشینه تکنیک های XAI و برنامه های کاربردی شهر هوشمند پایدار آغاز می شود. سپس با فصلهایی که در مورد XAI برای مراقبتهای بهداشتی هوشمند، آموزش هوشمند، حملونقل هوشمند، محیطزیست هوشمند، شهرسازی و حکمرانی هوشمند، و امنیت سایبری برای شهرهای هوشمند بحث میکنند، ادامه مییابد.
Thanks to rapid technological developments in terms of Computational Intelligence, smart tools have been playing active roles in daily life. It is clear that the 21st century has brought about many advantages in using high-level computation and communication solutions to deal with real-world problems; however, more technologies bring more changes to society. In this sense, the concept of smart cities has been a widely discussed topic in terms of society and Artificial Intelligence-oriented research efforts. The rise of smart cities is a transformation of both community and technology use habits, and there are many different research orientations to shape a better future.
The objective of this book is to focus on Explainable Artificial Intelligence (XAI) in smart city development. As recently designed, advanced smart systems require intense use of complex computational solutions (i.e., Deep Learning, Big Data, IoT architectures), the mechanisms of these systems become ‘black-box’ to users. As this means that there is no clear clue about what is going on within these systems, anxieties regarding ensuring trustworthy tools also rise. In recent years, attempts have been made to solve this issue with the additional use of XAI methods to improve transparency levels. This book provides a timely, global reference source about cutting-edge research efforts to ensure the XAI factor in smart city-oriented developments. The book includes both positive and negative outcomes, as well as future insights and the societal and technical aspects of XAI-based smart city research efforts.
This book contains nineteen contributions beginning with a presentation of the background of XAI techniques and sustainable smart-city applications. It then continues with chapters discussing XAI for Smart Healthcare, Smart Education, Smart Transportation, Smart Environment, Smart Urbanization and Governance, and Cyber Security for Smart Cities.
Cover Half Title Title Page Copyright Page Contents Contributors 1. An Overview of Explainable Artificial Intelligence (XAI) from a Modern Perspective 1.1. Introduction 1.2. Explainable Artificial Intelligence (XAI) Concept 1.3. Need for XAI in Neural Network-Oriented Applications 1.4. Discussion 1.5. Trends 1.6. Conclusions References 2. Explainable Artificial Intelligence for Services Exchange in Smart Cities 2.1. Introduction 2.2. Explainable AI and Decision-Making 2.3. Big Data and ICT for XAI Services in the Context of Smart Cities 2.4. The Smart Environment with XAI 2.4.1. Proposed Smart City Main Pillars and Architecture 2.4.1.1. Transition Entities Government Entities Private Sector Investors Ad hoc Research Units 2.4.1.2. Policies Standardization and Protocols 2.4.1.3. Applications Layer Structure Considering XAI 2.5. Benefits of Using XAI in Smart Cities 2.6. Addressed Challenges for XAI Data Creation in Smart Cities 2.7. Summary References 3. IoT- and XAI-Based Smart Medical Waste Management 3.1. Introduction 3.2. Related Work 3.2.1. Medical Waste Management as an Application of Internet of Things-Based Smart Cities 3.2.2. Explainable Artificial Intelligence for Smart Cities 3.3. Proposed Approach 3.3.1. The Current Medical Waste Disposal Process in Morocco 3.3.1.1. Legislative Framework for Medical Waste Management in Morocco 3.3.1.2. The Current Model of Medical Waste Disposal 3.3.2. The Proposed Smart Model for Medical Waste Management 3.3.3. Architecture of the Proposed Smart Solution 3.3.3.1. Overview 3.3.3.2. Smart Devices 3.3.3.3. IoT Gateway 3.3.3.4. Data Preprocessing Layer 3.3.3.5. Data Processing Layer 3.3.3.6. Application Layer 3.4. Expected Results 3.5. Conclusion References 4. The Impact and Usage of Smartphone among Generation Z: A Study Based on Data Mining Techniques 4.1. Introduction 4.2. Literature Review 4.3. Methodology 4.3.1. Overview 4.3.2. KDD Process 4.3.3. Data Mining Methods 4.3.3.1. Association Rule 4.3.3.2. Classification 4.3.3.3. Weka Data Mining Tool 4.3.3.4. Approach 4.3.4. Implementation 4.3.4.1. Data Cleaning 4.3.4.2. Data Transformation 4.3.4.3. Generalization 4.3.4.4. Data Reduction 4.3.4.5. Attribute Subset Selection 4.3.4.6. Discretization 4.3.4.7. Association Rules 4.4. Results and Discussion 4.4.1. Data Collection 4.4.2. Data Summarization 4.4.2.1. Distribution of Gender 4.4.2.2. Distribution of Age 4.4.2.3. Distribution of Marital Status 4.4.2.4. Distribution of Education Level (Higher Education) 4.4.2.5. Distribution of Field Which Related to Information Technology or Non-Information Technology 4.4.2.6. Distribution of Respondents' Awareness Regarding the Side Effects of Smartphone Usage 4.4.2.7. Respondents' Opinion of Smartphone Use by Their Kids 4.4.2.8. Time Period Taken for the above Decision 4.4.2.9. Respondents' Opinion about Smartphone Technology Necessary to Children's Lives or Not 4.4.2.10. Distribution of Respondents That Worry about the Society Underestimating When Their Child Doesn't Know How to Handle a Smartphone 4.4.2.11. Respondents' Opinion on Monitoring Children's Mobile Activities 4.4.2.12. Type of Mobile Activities and Monitoring Rate 4.4.2.13. Respondents' Distribution in Preventing or Limiting Children's Smartphone Usage 4.4.2.14. Respondents' Opinion on Children Socializing More by Using Smartphones via Social Media 4.4.3. Evaluation 4.4.4. Classification 4.5. Conclusion References 5. Explainable Artificial Intelligence: Guardian for Cancer Care 5.1. Introduction 5.2. Explainable Artificial Intelligence 5.2.1. Evolution of Explainable Artificial Intelligence 5.2.2. Artificial Intelligence: Mechanism 5.3. Artificial Intelligence in Cancer Treatment and Drug Discovery 5.3.1. Drug Discovery 5.3.2. Prediction of Oncogenesis 5.3.3. Drug Repurposing 5.3.4. Modulation and Set Up Therapy Plans 5.4. Future Prospects 5.5. Conclusion References 6. ANN-Based Brain Tumor Classification: Performance Analysis Using K-Means and FCM Clustering With Various Training Functions 6.1. Introduction 6.2. Proposed Methodology 6.2.1. Preprocessing 6.2.1.1. Resizing 6.2.1.2. Sharpening Filter 6.2.2. Image Segmentation 6.2.2.1. K-Means Clustering 6.2.2.2. Fuzzy C-Means Clustering 6.2.3. Feature Extraction and Reduction 6.2.4. Classification 6.2.4.1. Levenberg-Marquardt 6.2.4.2. BFGS Quasi-Newton 6.2.4.3. Resilient Backpropagation 6.2.4.4. Scaled Conjugate Gradient 6.2.4.5. Conjugate Gradient With Powell-Beale Restarts 6.2.4.6. Fletcher-Powell Conjugate Gradient 6.2.4.7. Polak-Ribiére Conjugate Gradient 6.2.4.8. One Step Secant 6.2.4.9. Variable Learning Rate Backpropagation 6.2.5. Algorithm of Two Proposed Approaches 6.2.5.1. Algorithm 1 6.2.5.2. Algorithm 2 6.3. Experimental Results and Analysis 6.3.1. Dataset 6.3.2. Classification Accuracy of the Two Proposed Methods 6.3.3. Analysis of the Best-Obtained Accuracy 6.3.4. Result Analysis of Algorithm 1 and Algorithm 2 6.3.5. Comparison of Proposed Work with Relevant Works 6.4. Conclusion Acknowledgements References 7. Recognition of the Most Common Trisomies through Automated Identification of Abnormal Metaphase Chromosome Cells 7.1. Introduction 7.1.1. Background 7.1.2. Contributions 7.1.3. Chapter Organization 7.2. Related Works 7.3. Methods 7.3.1. Image Preprocessing and Segmentation 7.3.2. Feature Extraction 7.3.2.1. Chromosome Length 7.3.2.2. Relative Length 7.3.2.3. Chromosome Area 7.3.2.4. Relative Area 7.3.2.5. Centromere Index (CI) 7.3.2.6. Density Profile 7.3.3. Chromosome Classification 7.3.4. Trisomy Detection 7.4. Experimental Evaluation and Results 7.4.1. Dataset 7.4.2. Performance Measurement 7.4.3. Experiments and Results 7.4.3.1. Experiment 1: Test (Classic and Multiple Autoencoder) Neural Network to Classify Chromosomes into Six Class 7.4.3.2. Experiment 2: Test Multiple Autoencoder Neural Network to Classify Chromosomes into Five Classes 7.5. Conclusion and Future Work References 8. Smart Learning Solutions for Combating COVID-19 8.1. Introduction 8.1.1. Background: Smart Education an Essential Component of Smart Cities 8.1.2. Teaching-Learning Process 8.1.3. Teaching Pedagogies 8.1.3.1. Lectures 8.1.3.2. Worked Examples 8.1.3.3. Interactive Learning 8.1.3.4. Spaced-Learning 8.1.3.5. Flipped Classrooms 8.1.3.6. Socratic Questioning 8.1.3.7. Discussion-Based Learning 8.1.3.8. Case-Based Learning 8.1.3.9. Collaborative Learning 8.1.3.10. Enquiry-Based Learning 8.1.3.11. Problem-Based Learning 8.1.3.12. Project-Based Learning 8.1.3.13. Self-Learning 8.1.3.14. Game-Based Learning and Gamification 8.1.3.15. VAK Teaching 8.1.3.16. Cross-Over Learning 8.2. From Face-to-Face Teaching to Online Teaching 8.2.1. Computer-Aided Teaching-Learning 8.2.2. Digital Education 8.2.2.1. Time Line of Digital Education 8.2.2.2. Advantages of Digital Learning 8.3. Initiatives Taken by Governments of Various Countries 8.3.1. Afghanistan 8.3.2. Argentina 8.3.3. Austria 8.3.4. Bangladesh 8.3.5. Belize 8.3.6. Bermuda 8.3.7. China 8.3.8. United States 8.3.9. United Kingdom 8.3.10. India 8.4. Smart Technologies for Online Learning 8.4.1. Mobile Learning 8.4.2. Microlearning 8.4.3. Internet of Things 8.4.4. Cloud-Based e-Learning 8.4.5. Gamification 8.4.6. Adaptive e-Learning 8.4.7. Augmented Reality 8.4.8. Video e-Learning 8.4.9. Beacon e-Learning 8.4.10. Artificial Intelligence e-Learning 8.5. Smart Resources for Online Teaching, Learning, and Evaluation 8.5.1. Dropbox 8.5.2. Class Dojo 8.5.3. Edmodo 8.5.4. Educreations 8.5.5. TED Ed 8.5.6. Unplag 8.5.7. Slack 8.5.8. Google Apps for Education 8.5.9. Remind 8.5.10. Edublogs 8.5.11. Socrative 8.5.12. Moodle 8.5.13. Discord 8.6. Artificial Intelligence-Based Learning and the Emergence of the Intelligent Tutoring System (ITS) 8.7. Explainable Artificial Intelligence (XAI) 8.8. Blended Learning Model for Future 8.8.1. Face-to-Face Driver Model 8.8.2. Rotation Model 8.8.2.1. Station Rotation 8.8.2.2. Lab Rotation 8.8.2.3. Flipped Rotation 8.8.2.4. Individual Rotation Model 8.8.3. Flex Model 8.8.4. Online Lab School Model 8.8.5. Self-Blended Model Evaluation of classification methods and learning logs 8.8.6. Online Driver Model 8.9. Limitations and Future Prospects Notes References 9. An Analysis of Machine Learning for Smart Transportation System (STS) 9.1. Introduction 9.2. Evolution of Smart Transport System (STS) 9.3. Process of Smart Transport System 9.3.1. Why Is a Smart Transportation System Required? 9.3.2. How Does a Smart Transportation System Work? 9.3.2.1. STS Joining Innovations 9.3.2.2. STS Technological Facilitation 9.3.2.3. Information Acquisition 9.3.2.4. Information Processing 9.3.2.5. Information Communications 9.3.2.6. Information Sharing 9.3.2.7. Information Exploitation 9.3.3. Intelligent Transportation System User Functions 9.4. Need for ML Techniques in STS 9.5. DL Techniques for Autonomous Vehicle Decision Making 9.5.1. DL for Driving Scene Perception and Localization 9.5.2. DL Neural Techniques for Autonomous Driving 9.5.3. DL for Passage Preparation and Performance Calculation 9.6. Integration of ML with IoT in Autonomous Vehicles 9.7. Conclusion References 10. Classification of Kinematic Data Using Explainable Artificial Intelligence (XAI) for Smart Motion 10.1. Introduction 10.2. Research Review 10.3. Materials and Methods 10.3.1. Study Sample 10.3.2. Experimental Set-Up 10.3.3. Data Acquisition 10.3.4. Data Management 10.3.5. System Evaluation 10.4. Result 10.4.1. Whole-Body Movement 10.4.2. Upper-Limbs Movement 10.5. Discussion 10.6. Conclusion Acknowledgements References 11. Smart Urban Traffic Management for an Efficient Smart City 11.1. Introduction 11.2. Smart Transport in Smart City Environment 11.2.1. Explainable Artificial Intelligence (XAI) 11.2.2. Edge and Fog Computing for Smart City 11.2.3. Fog Data as a Service Delivery Model 11.2.4. Toward a Fog-Based Real-Time Big Data Pipeline 11.2.5. Smart Transportation Systems (STS) and Vehicular Fog Computing 11.2.6. Deep Learning (DL) Methods 11.3. Related Works on Urban Traffic Management UTM 11.3.1. Urban Traffic Management 11.3.2. Urban Traffic Management Approaches 11.3.3. Traffic Lights Management 11.3.4. DL Approaches for Urban Traffic Management 11.3.4.1. Traffic Analysis and Prediction 11.3.4.2. Autonomous Driving 11.3.4.3. Traffic Signal Control 11.4. Network for Urban Data Collection 11.4.1. Internet of Things (IoT) 11.4.2. Air Pollution Measurements 11.5. Our Project Architecture 11.5.1. Hardware Implementation for Data Collection 11.5.2. Urban Traffic Model 11.6. Our Approach for Urban Traffic Flow Management 11.6.1. Concept 11.6.2. Mathematical Models of Route Flow and Crossroads 11.6.2.1. Basic Process Model 11.6.2.2. Fluid Modelling of Road Network Flows 11.6.2.3. Dynamics of a Fluid Reservoir 11.6.3. Traffic Lights Management 11.6.4. Implementation Example 11.7. Impact of UTM on Urban Supply Chain 11.7.1. Urban SC towards GrSC in the Literature 11.7.2. Urban Air Pollution and the GrSCM 11.7.3. Improvement of Key Indicators of Urban Supply Chain 11.8. Conclusion References 12. Systematic Comparison of Feature Selection Methods for Solar Energy Forecasting 12.1. Introduction 12.2. Related Work 12.3. Feature Selection Algorithms 12.3.1. Least Absolute Shrinkage and Selection Operator 12.3.2. Random Forests FS 12.3.3. Stepwise Regression 12.4. Real-World Application 12.4.1. Dataset 12.4.2. Feature Selection Results and Discussion 12.5. Conclusion References 13. Indoor Environment Assistance Navigation System Using Deep Convolutional Neural Networks 13.1. Introduction 13.2. Related Work 13.3. Recognizing Indoor Objects: Approach Adopted Based on Deep CNN 13.3.1. Indoor Objects Recognition Using EfficientNet 13.3.2. Indoor Objects Recognition Using Inception Family 13.3.3. Indoor Objects Recognition Using ResNet 13.4. Experiments and Results 13.5. Conclusion References 14. Pixel-Based Classification of Land Use/Land Cover Built-Up and Non-Built-Up Areas Using Google Earth Engine in an Urban Region (Delhi, India) 14.1. Introduction 14.1.1. Background 14.1.2. Methodology 14.1.3. Chapter Organization 14.2. Related Work 14.3. Problem Statement 14.4. Methodology 14.4.1. Google Earth Engine (GEE) 14.4.2. Classification Models 14.4.2.1. Classification and Regression Tree (CART) or Decision Tree 14.4.2.2. Support Vector Machine (SVM) 14.4.2.3. Random Forest 14.4.3. Cross-Validation 14.5. Proposed Method 14.6. Experiment 14.6.1. Study Area 14.6.2. Dataset 14.6.3. Preprocessing and Scene Selection 14.6.3.1. Top of Atmosphere (TOA) Reflectance 14.6.3.2. Solar Zenith Angle 14.6.3.3. Sun Elevation Angle 14.6.3.4. Normalized Difference Vegetation Index (NDVI) 14.6.3.5. Normalized Difference Built-Up Index (NDBI) 14.6.4. Detection of Built-Up Regions 14.7. Result and Analysis 14.8. Discussion and Conclusion 14.9. Future Work Recommendations Acknowledgements References 15. Emergence of Smart Home Systems Using IoT: Challenges and Limitations 15.1. Introduction 15.1.1. Background 15.1.2. Methodology 15.1.3. Chapter Organization 15.2. Functions of Smart Home System 15.2.1. Alert and Sensors 15.2.2. Monitor 15.2.3. Control 15.2.4. Intelligence and Logic 15.3. Challenges and Limitations 15.3.1. Interoperability 15.3.2. Self-Management 15.3.3. Maintainability 15.3.4. Signalling 15.3.5. Usability 15.3.6. Power Aware/Efficient Consumption 15.3.7. High Cost of Ownership 15.3.8. Security and Privacy 15.3.9. Acceptance and Reliability 15.3.10. Calmness and Context-Awareness 15.3.11. Architectural Readiness 15.4. Conclusion References 16. Acceptance of Blockchain in Smart City Governance from the User Perspective 16.1. Introduction 16.1.1. Objectives 16.1.2. Research Questions 16.1.3. Chapter Organization 16.2. Related Work 16.3. Research Method 16.3.1. Search Criteria 16.3.2. Conceptual Model 16.3.2.1. Social Cognitive Theory (SCT) 16.3.2.2. Technology Acceptance Model (TAM) 16.3.2.3. Urban Service Technology Acceptance Model (USTAM) 16.4. Literature Review 16.4.1. Prior Research on Technology Acceptance 16.4.2. Factors and Hypotheses 16.4.3. Factors Additional to USTAM 16.4.4. Summary 16.5. Proposed Future Methodology 16.5.1. Approach 16.5.2. Research Instrument 16.5.3. Data Sample 16.5.4. Data Analysis Methodology 16.6. Discussion 16.7. Conclusion References 17. Explainable AI in Machine/Deep Learning for Intrusion Detection in Intelligent Transportation Systems for Smart Cities 17.1. Introduction 17.2. Road ITS Technologies in Smart Cities 17.2.1. Vehicular Area Network (VANET) 17.2.2. VANET Communications 17.3. Road ITS in Smart City Architecture 17.4. Road ITS Security Issues and Challenges 17.4.1. Road ITS Vulnerabilities 17.4.2. Road ITS Threats and Attacks 17.5. Intrusion Detection Against Road ITS Attacks 17.5.1. Related Studies 17.5.2. Discussion and Open Issues 17.6. Explainable Artificial Intelligence in Cyber Security 17.6.1. Explainable Artificial Intelligence Background Knowledge 17.6.2. Related Studies in Explainable Artificial Intelligence for Cyber Security 17.6.3. Discussion and Future Directions 17.7. Case Study: DDoS Attacks in Road ITS and Their Impact on Smart Cities 17.7.1. Road ITS and Smart City Simulation Environment in NS3 17.7.1.1. Road ITS Simulation 17.7.1.2. Smart Home Simulation 17.7.1.3. Smart Hospital Simulation 17.7.1.4. Telecom Network Simulation 17.7.1.5. Other Infrastructures Simulations 17.7.2. DDoS Attacks Modelling Scenarios 17.7.2.1. Scenarios Targeting Road ITS Scenarios 17.7.2.2. Scenarios Initiated from Road ITS 17.7.3. Results, Analysis, and Discussion 17.7.4. Road ITS-Smart City Security Impact Framework Evaluation 17.7.5. Results and Discussion 17.8. Conclusion References 18. Real-Time Identity Censorship of Videos to Enable Live Telecast Using NVIDIA Jetson Nano 18.1. Introduction 18.2. Background 18.3. Materials 18.3.1. Hardware 18.3.1.1. NVIDIA Jetson Nano 18.3.1.2. Camera 18.3.2. Dataset 18.3.3. Proposed Methodology 18.3.4. Model Pipeline 18.4. Experimental Study 18.4.1. Data Augmentation 18.4.2. Experiments 18.4.3. Metrics 18.5. Results 18.6. Conclusions References 19. Smart Cities' Information Security: Deep Learning-Based Risk Management 19.1. Introduction 19.2. Literature Review 19.3. Smart Cities' Security Based on DL 19.3.1. Application of Association Rules 19.4. Discussion 19.5. Conclusion References Index