دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: R Srinivasan, T G Ramesh, G Umesh, C S Sundar سری: ISBN (شابک) : 9789811278884, 9789811278907 ناشر: World Scientific Publishing سال نشر: 2024 تعداد صفحات: [532] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 96 Mb
در صورت تبدیل فایل کتاب Experimental Techniques in Physics and Materials Science. Principles and Methodologies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تکنیک های تجربی در علم فیزیک و مواد. اصول و روشها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
CONTENTS Preface Acknowledgement Part I Techniques for Preparation of Materials Chapter 1 Techniques for Preparation of Solid-State Materials and Nanoparticles 1. Introduction 2. Preparation of Materials in Solid State 3. Preparation in Bulk Form 3.1. Solid-state reaction technique 3.2. Precursor method 3.3. Sol–gel method 3.4. Combustion synthesis 3.5. High-pressure synthesis 4. Preparation of Nanomaterials 4.1. Physical methods 4.1.1. Flash spray pyrolysis 4.1.2. Laser pyrolysis 4.1.3. High-energy ball milling 4.2. Chemical methods 4.2.1. Microemulsion technique 4.2.2. Polyol process 4.3. Bio-assisted methods 5. Conclusion References Chapter 2 Deposition of Thin Films 1. Introduction 2. Dip Coating 3. Spin Coating 4. Chemical Vapor Deposition 5. Deposition of Thin Films by Thermal Evaporation 5.1. Distribution of film thickness on substrate 5.2. Growth of film 6. Deposition of Thin Films by Sputtering 6.1. Quantities which determine the rate of sputtering 6.2. Description of sputter deposition system 6.3. Monitoring the thickness of the deposited film 7. Molecular Beam Epitaxy 8. Conclusion References Part II Techniques for Materials Characterization Chapter 3 X-Ray and Neutron Powder Diffraction 1. Introduction 2. Monochromatization and Collimation of the Radiation 3. X-ray Detectors 4. Sample Preparation for a Powder Diffractometer 5. Principle of Powder Diffraction of X-rays 6. Factors Affecting Powder Diffraction Patterns 7. Indexing a Powder Diffraction Pattern 8. Powder X-ray Diffraction Data Bank 9. Applications of X-ray Powder Diffraction 9.1. Phase identification 9.2. Texture 9.3. Crystallite size 9.4. Rietveld refinement for crystal structure determination 10. Other X-ray Diffraction Techniques 11. Limitations of X-ray Diffraction 12. Neutron Diffraction 12.1. Coherent and incoherent scattering cross-sections 12.2. Advantages of neutron diffraction References Chapter 4 Electron Spectroscopy for Chemical Analysis 1. Introduction 2. Binding Energy of an Electron in an Atom 3. Influence of the Valence State of the Atom and its Environment on the Binding Energy 4. Energy Bands in a Solid 5. Photoelectric Effect 6. ESCA Spectrometer 7. Examples of ESCA Spectra 7.1. Core-level shifts in binding energy 7.2. Fixing the Fermi level and measuring the density of states in a metal 7.3. Plasmon peaks in metals 8. Conclusion References Chapter 5 Ellipsometry for Thin-Film Analysis 1. Introduction 2. Fresnel’s Equations for Reflection and Transmission 3. Ellipsometer and its Main Components 4. Basics of Elliptically Polarized Light 5. Basic Principles of Ellipsometry 6. Experimental Techniques in Ellipsometry 7. Null Ellipsometry Method 8. Photometric Ellipsometry Method 9. Calibration of the Ellipsometer and Sample Preparation 10. Analysis of Ellipsometry Data 11. Conclusion References Chapter 6 Electron Microscopy 1. Introduction 2. Principle of Operation of an Electron Microscope 3. Diffraction of Electron Beams 4. Transmission Electron Microscopy 4.1. Some examples of TEM images 5. Scanning Electron Microscope 5.1. Some examples of SEM images 5.2. Energy-dispersive X-ray analysis 6. Applications of Electron Microscopes 7. Conclusion References Chapter 7 Surface Probe Techniques 1. Introduction 2. Scanning Tunnelling Microscope 3. Atomic Force Microscope 3.1. Contact AFM 3.2. Non-contact AFM 3.3. Intermittent contact AFM 4. Magnetic Force Microscopy 5. Media in Which Scanning Microscopes Operate 6. Advantages of Scanning Probe Microscopes 7. Conclusion References Chapter 8 Positron Annihilation Spectroscopy as a Tool for the Study of Defects in Solids 1. Introduction 2. Positron Annihilation in a Solid 3. Positron Annihilation Techniques 3.1. Positron sources 3.2. Positron lifetime measurements 4. Select Examples of Defect Studies 4.1. Vacancy formation energy in metals 4.2. Annealing behavior of defects 4.2.1. Vacancy clustering in metals 4.2.2. Helium decoration of vacancies and helium bubble formation in α-irradiated Nickel 4.3. Phase transition studies 5. Doppler Broadening Spectrometry 6. Low-Energy Positron Beam Spectrometry 7. Angular Correlation Positron Annihilation Spectroscopy 8. Conclusion References Part III Techniques for Measurement of Physical Properties Chapter 9 Elastic Properties 1. Introduction 2. Stress–Strain Curve: Universal Testing Machine 3. Hooke’s Law and Elastic Constants 4. Elastic Constants and Sound Velocity 5. Static Methods for Measuring Elastic Constants 6. Dynamic Methods 6.1. Pulse echo method for sound velocity measurement 6.2. Resonance methods for measuring elastic constants 7. Conclusion References Part III.1 Thermal Properties Chapter 10 Specific Heat 1. Introduction 2. Procedure for Measuring Specific Heat 3. Schematic Diagram of a Quasi-Adiabatic Calorimeter 4. Relaxation Method 5. AC Calorimetry 6. Conclusion References Chapter 11 Thermal Expansion of Solids 1. Introduction 2. Procedure for the Measurement of α 3. Interferometric Method 4. Three-Terminal Capacitance Technique 5. Linear Voltage Differential Transformer Method 6. X-ray Technique 7. Conclusion References Chapter 12 Thermal Conductivity and Diffusivity 1. Introduction 2. Steady-State Method for Measuring Thermal Conductivity 3. Non-Steady-State Methods to Measure Thermal Diffusivity 4. Methods for Measuring Thermal Diffusivity 4.1. Thermal wave method 4.2. Laser flash method 5. Conclusion References Part III.2 Electrical Transport Properties Chapter 13 Electrical Conductivity of Metals and Semiconductors 1. Introduction 2. Drude Theory of Electrical Conductivity 3. Sommerfeld Model of Free Electron Gas 3.1. One-dimensional metal 3.2. Three-dimensional metal 3.3. Fermi–Dirac distribution function 3.4. Electrical conductivity 4. Band Theory of Solids 4.1. Bloch theorem 4.2. Concept of crystal momentum 4.3. Physical origin of band gap 4.4. Number of states in a band 4.5. Distinction between metals, insulators, and semiconductors 4.6. Velocity of the Bloch electron 4.7. Dynamical effective mass 4.8. Electrical conductivity of an intrinsic semiconductor 4.9. Electrical conductivity of an extrinsic semiconductor 5. Resistivity Measurement Techniques for Bulk Samples, Thin Films, and Pellets and for Samples in Wire Form 5.1. Bulk samples 5.1.1. Collinear four-probe resistivity technique 5.2. Thin-film geometry 5.3. Wire or thin strip geometry 5.3.1. Van der Pauw technique 5.3.2. Resistivity measurement technique as a function of temperature 6. Hall Effect in Semiconductors References Chapter 14 Seebeck Coefficient in Metals and Semiconductors 1. Introduction 2. Seebeck Effect 3. Peltier Effect 4. Thermodynamics Applied to Seebeck and Peltier Effects 5. Thomson Effect and Kelvin Relations 6. Physical Basis for the Origin of the Seebeck Coefficient in Metals and Semiconductors 7. Seebeck Coefficient in Metals 8. Seebeck Coefficient of an n-type Semiconductor 9. Seebeck Coefficient of a p-type Semiconductor 10. Integral Method of Measuring the Seebeck Coefficient of Metals and Alloys as a Function of Temperature 10.1. Seebeck-emf analyzer 10.2. Measurement of absolute Seebeck coefficient of constantan as a function of temperature 10.3. Results 10.4. Neutral and inversion temperature in iron–copper thermocouple 11. Differential Method for Measuring the Absolute Seebeck Coefficient of n-type and p-type Bismuth Telluride 11.1. Preparation of n-type and p-type Bi2Te3 by mechanical alloying technique 11.2. Differential method of measuring Seebeck coefficient Chapter 15 Dielectric Properties 1. Introduction 2. Contributions to Electric Polarization P 3. Frequency Dependence of Dielectric Constant 4. Propagation of Electromagnetic Waves in an Unbounded Medium 5. Measurement of the Dielectric Constant εr of Materials in the Audio and Radio Frequency Ranges 6. Measuring Dielectric Parameters at High Frequencies using the S-Parameters and a Vector Network Analyzer 6.1. Transmission line technique 6.2. Open-ended coaxial probe technique 6.3. Free space method 6.4. Resonator technique 7. Conclusion References Chapter 16 Magnetic Properties 1. Introduction 2. Methods Based on the Force Exerted on a Sample by the Magnetic Field 2.1. Gouy balance 2.2. Faraday balance 2.3. Torsion balance 3. AC Susceptibility 4. Vibrating Sample Magnetometer 5. SQUID Magnetometer 6. B–H Curve Tracer References Part IV Spectroscopic Techniques Chapter 17 NMR and EPR Spectroscopy 1. Introduction 2. Principle of Magnetic Resonance 3. Nuclear Magnetic Resonance 3.1. Features of NMR 3.1.1. Chemical shift 3.1.2. Integrated intensity 3.1.3. Multiplicity of peaks 3.2. Fourier transform NMR 3.3. Relaxation phenomenon in NMR 3.3.1. Principle of pulsed NMR to measure relaxation time 3.4. Applications of NMR spectroscopy 4. Electron Paramagnetic Resonance 4.1. EPR spectrometer 4.2. Anisotropy in g value due to the anisotropy in surrounding ligands 4.3. Improvement in resolution at higher frequencies 4.4. Electron–nuclear double resonance 4.5. Applications of EPR References Chapter 18 IR, Visible, and UV Spectroscopies 1. Introduction 2. Infrared Spectroscopy 3. Absorption Spectrometer 4. Fourier Transform IR Instrument 5. Visible and Ultraviolet (UV) Spectroscopy 5.1. Absorption spectroscopy 5.2. Fluorescence and phosphorescence 5.3. Raman spectroscopy 6. Conclusion References Chapter 19 Mossbauer Spectroscopy 1. Introduction 2. Emitter Source in Mossbauer Spectroscopy 3. Experimental Setup for Mossbauer Spectroscopy 4. Factors Responsible for Shift in Energy Levels 4.1. Isomer shift 4.2. Nuclear quadrupole splitting 4.3. Application to mixed valence states 4.4. Splitting due to hyperfine interaction 5. Conclusion References Part V Phase Transition Chapter 20 Phase Transitions 1. Introduction 2. Gibbs Free Energy and Chemical Potential 3. Chemical Potential 4. Phase Equilibrium in a Single-Component System 5. Phase Diagram 6. Clausius–Clapeyron Relation and the Shape of the Coexistence Curves 6.1. Latent heat 7. Symmetry Aspects of Phase Diagram 8. Classification of Phase Transitions 9. Van der Waals Equation of State 10. Critical Point Phenomenon 11. Weiss Theory of Paramagnetic–Ferromagnetic Phase Transition 12. Experimental Techniques for Phase Transitions Studies 12.1. Differential thermal analysis 12.1.1. Experimental setup 12.1.2. Typical experimental data 12.2. Differential scanning calorimeter 12.2.1. Heat flux DSC 12.2.2. Power-compensated DSC 12.3. Ferromagnetic–paramagnetic transition in nickel studied through high-resolution resistivity technique 12.3.1. Experimental setup 12.4. Ferroelectric–paraelectric transition in modified barium titanate 12.4.1. Experimental arrangement 12.4.2. Ferro–para transition in modified barium titanate 12.5. Martensite–austenite phase transition in a shape memory alloy 12.5.1. Experimental References Index