ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Experimental Techniques in Physics and Materials Science. Principles and Methodologies

دانلود کتاب تکنیک های تجربی در علم فیزیک و مواد. اصول و روشها

Experimental Techniques in Physics and Materials Science. Principles and Methodologies

مشخصات کتاب

Experimental Techniques in Physics and Materials Science. Principles and Methodologies

ویرایش:  
نویسندگان: , , ,   
سری:  
ISBN (شابک) : 9789811278884, 9789811278907 
ناشر: World Scientific Publishing 
سال نشر: 2024 
تعداد صفحات: [532] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 96 Mb 

قیمت کتاب (تومان) : 35,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Experimental Techniques in Physics and Materials Science. Principles and Methodologies به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تکنیک های تجربی در علم فیزیک و مواد. اصول و روشها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

CONTENTS
Preface
Acknowledgement
Part I Techniques for Preparation of Materials
	Chapter 1 Techniques for Preparation of Solid-State Materials and Nanoparticles
		1. Introduction
		2. Preparation of Materials in Solid State
		3. Preparation in Bulk Form
			3.1. Solid-state reaction technique
			3.2. Precursor method
			3.3. Sol–gel method
			3.4. Combustion synthesis
			3.5. High-pressure synthesis
		4. Preparation of Nanomaterials
			4.1. Physical methods
				4.1.1. Flash spray pyrolysis
				4.1.2. Laser pyrolysis
				4.1.3. High-energy ball milling
			4.2. Chemical methods
				4.2.1. Microemulsion technique
				4.2.2. Polyol process
			4.3. Bio-assisted methods
		5. Conclusion
		References
	Chapter 2 Deposition of Thin Films
		1. Introduction
		2. Dip Coating
		3. Spin Coating
		4. Chemical Vapor Deposition
		5. Deposition of Thin Films by Thermal Evaporation
			5.1. Distribution of film thickness on substrate
			5.2. Growth of film
		6. Deposition of Thin Films by Sputtering
			6.1. Quantities which determine the rate of sputtering
			6.2. Description of sputter deposition system
			6.3. Monitoring the thickness of the deposited film
		7. Molecular Beam Epitaxy
		8. Conclusion
		References
Part II Techniques for Materials Characterization
	Chapter 3 X-Ray and Neutron Powder Diffraction
		1. Introduction
		2. Monochromatization and Collimation of the Radiation
		3. X-ray Detectors
		4. Sample Preparation for a Powder Diffractometer
		5. Principle of Powder Diffraction of X-rays
		6. Factors Affecting Powder Diffraction Patterns
		7. Indexing a Powder Diffraction Pattern
		8. Powder X-ray Diffraction Data Bank
		9. Applications of X-ray Powder Diffraction
			9.1. Phase identification
			9.2. Texture
			9.3. Crystallite size
			9.4. Rietveld refinement for crystal structure determination
		10. Other X-ray Diffraction Techniques
		11. Limitations of X-ray Diffraction
		12. Neutron Diffraction
			12.1. Coherent and incoherent scattering cross-sections
			12.2. Advantages of neutron diffraction
		References
	Chapter 4 Electron Spectroscopy for Chemical Analysis
		1. Introduction
		2. Binding Energy of an Electron in an Atom
		3. Influence of the Valence State of the Atom and its Environment on the Binding Energy
		4. Energy Bands in a Solid
		5. Photoelectric Effect
		6. ESCA Spectrometer
		7. Examples of ESCA Spectra
			7.1. Core-level shifts in binding energy
			7.2. Fixing the Fermi level and measuring the density of states in a metal
			7.3. Plasmon peaks in metals
		8. Conclusion
		References
	Chapter 5 Ellipsometry for Thin-Film Analysis
		1. Introduction
		2. Fresnel’s Equations for Reflection and Transmission
		3. Ellipsometer and its Main Components
		4. Basics of Elliptically Polarized Light
		5. Basic Principles of Ellipsometry
		6. Experimental Techniques in Ellipsometry
		7. Null Ellipsometry Method
		8. Photometric Ellipsometry Method
		9. Calibration of the Ellipsometer and Sample Preparation
		10. Analysis of Ellipsometry Data
		11. Conclusion
		References
	Chapter 6 Electron Microscopy
		1. Introduction
		2. Principle of Operation of an Electron Microscope
		3. Diffraction of Electron Beams
		4. Transmission Electron Microscopy
			4.1. Some examples of TEM images
		5. Scanning Electron Microscope
			5.1. Some examples of SEM images
			5.2. Energy-dispersive X-ray analysis
		6. Applications of Electron Microscopes
		7. Conclusion
		References
	Chapter 7 Surface Probe Techniques
		1. Introduction
		2. Scanning Tunnelling Microscope
		3. Atomic Force Microscope
			3.1. Contact AFM
			3.2. Non-contact AFM
			3.3. Intermittent contact AFM
		4. Magnetic Force Microscopy
		5. Media in Which Scanning Microscopes Operate
		6. Advantages of Scanning Probe Microscopes
		7. Conclusion
		References
	Chapter 8 Positron Annihilation Spectroscopy as a Tool for the Study of Defects in Solids
		1. Introduction
		2. Positron Annihilation in a Solid
		3. Positron Annihilation Techniques
			3.1. Positron sources
			3.2. Positron lifetime measurements
		4. Select Examples of Defect Studies
			4.1. Vacancy formation energy in metals
			4.2. Annealing behavior of defects
				4.2.1. Vacancy clustering in metals
				4.2.2. Helium decoration of vacancies and helium bubble formation in α-irradiated Nickel
			4.3. Phase transition studies
		5. Doppler Broadening Spectrometry
		6. Low-Energy Positron Beam Spectrometry
		7. Angular Correlation Positron Annihilation Spectroscopy
		8. Conclusion
		References
Part III Techniques for Measurement of Physical Properties
	Chapter 9 Elastic Properties
		1. Introduction
		2. Stress–Strain Curve: Universal Testing Machine
		3. Hooke’s Law and Elastic Constants
		4. Elastic Constants and Sound Velocity
		5. Static Methods for Measuring Elastic Constants
		6. Dynamic Methods
			6.1. Pulse echo method for sound velocity measurement
			6.2. Resonance methods for measuring elastic constants
		7. Conclusion
		References
	Part III.1 Thermal Properties
		Chapter 10 Specific Heat
			1. Introduction
			2. Procedure for Measuring Specific Heat
			3. Schematic Diagram of a Quasi-Adiabatic Calorimeter
			4. Relaxation Method
			5. AC Calorimetry
			6. Conclusion
			References
		Chapter 11 Thermal Expansion of Solids
			1. Introduction
			2. Procedure for the Measurement of α
			3. Interferometric Method
			4. Three-Terminal Capacitance Technique
			5. Linear Voltage Differential Transformer Method
			6. X-ray Technique
			7. Conclusion
			References
		Chapter 12 Thermal Conductivity and Diffusivity
			1. Introduction
			2. Steady-State Method for Measuring Thermal Conductivity
			3. Non-Steady-State Methods to Measure Thermal Diffusivity
			4. Methods for Measuring Thermal Diffusivity
				4.1. Thermal wave method
				4.2. Laser flash method
			5. Conclusion
			References
	Part III.2 Electrical Transport Properties
		Chapter 13 Electrical Conductivity of Metals and Semiconductors
			1. Introduction
			2. Drude Theory of Electrical Conductivity
			3. Sommerfeld Model of Free Electron Gas
				3.1. One-dimensional metal
				3.2. Three-dimensional metal
				3.3. Fermi–Dirac distribution function
				3.4. Electrical conductivity
			4. Band Theory of Solids
				4.1. Bloch theorem
				4.2. Concept of crystal momentum
				4.3. Physical origin of band gap
				4.4. Number of states in a band
				4.5. Distinction between metals, insulators, and semiconductors
				4.6. Velocity of the Bloch electron
				4.7. Dynamical effective mass
				4.8. Electrical conductivity of an intrinsic semiconductor
				4.9. Electrical conductivity of an extrinsic semiconductor
			5. Resistivity Measurement Techniques for Bulk Samples, Thin Films, and Pellets and for Samples in Wire Form
				5.1. Bulk samples
					5.1.1. Collinear four-probe resistivity technique
				5.2. Thin-film geometry
				5.3. Wire or thin strip geometry
					5.3.1. Van der Pauw technique
					5.3.2. Resistivity measurement technique as a function of temperature
			6. Hall Effect in Semiconductors
			References
		Chapter 14 Seebeck Coefficient in Metals and Semiconductors
			1. Introduction
			2. Seebeck Effect
			3. Peltier Effect
			4. Thermodynamics Applied to Seebeck and Peltier Effects
			5. Thomson Effect and Kelvin Relations
			6. Physical Basis for the Origin of the Seebeck Coefficient in Metals and Semiconductors
			7. Seebeck Coefficient in Metals
			8. Seebeck Coefficient of an n-type Semiconductor
			9. Seebeck Coefficient of a p-type Semiconductor
			10. Integral Method of Measuring the Seebeck Coefficient of Metals and Alloys as a Function of Temperature
				10.1. Seebeck-emf analyzer
				10.2. Measurement of absolute Seebeck coefficient of constantan as a function of temperature
				10.3. Results
				10.4. Neutral and inversion temperature in iron–copper thermocouple
			11. Differential Method for Measuring the Absolute Seebeck Coefficient of n-type and p-type Bismuth Telluride
				11.1. Preparation of n-type and p-type Bi2Te3 by mechanical alloying technique
				11.2. Differential method of measuring Seebeck coefficient
		Chapter 15 Dielectric Properties
			1. Introduction
			2. Contributions to Electric Polarization P
			3. Frequency Dependence of Dielectric Constant
			4. Propagation of Electromagnetic Waves in an Unbounded Medium
			5. Measurement of the Dielectric Constant εr of Materials in the Audio and Radio Frequency Ranges
			6. Measuring Dielectric Parameters at High Frequencies using the S-Parameters and a Vector Network Analyzer
				6.1. Transmission line technique
				6.2. Open-ended coaxial probe technique
				6.3. Free space method
				6.4. Resonator technique
			7. Conclusion
			References
		Chapter 16 Magnetic Properties
			1. Introduction
			2. Methods Based on the Force Exerted on a Sample by the Magnetic Field
				2.1. Gouy balance
				2.2. Faraday balance
				2.3. Torsion balance
			3. AC Susceptibility
			4. Vibrating Sample Magnetometer
			5. SQUID Magnetometer
			6. B–H Curve Tracer
			References
Part IV Spectroscopic Techniques
	Chapter 17 NMR and EPR Spectroscopy
		1. Introduction
		2. Principle of Magnetic Resonance
		3. Nuclear Magnetic Resonance
			3.1. Features of NMR
				3.1.1. Chemical shift
				3.1.2. Integrated intensity
				3.1.3. Multiplicity of peaks
			3.2. Fourier transform NMR
			3.3. Relaxation phenomenon in NMR
				3.3.1. Principle of pulsed NMR to measure relaxation time
			3.4. Applications of NMR spectroscopy
		4. Electron Paramagnetic Resonance
			4.1. EPR spectrometer
			4.2. Anisotropy in g value due to the anisotropy in surrounding ligands
			4.3. Improvement in resolution at higher frequencies
			4.4. Electron–nuclear double resonance
			4.5. Applications of EPR
		References
	Chapter 18 IR, Visible, and UV Spectroscopies
		1. Introduction
		2. Infrared Spectroscopy
		3. Absorption Spectrometer
		4. Fourier Transform IR Instrument
		5. Visible and Ultraviolet (UV) Spectroscopy
			5.1. Absorption spectroscopy
			5.2. Fluorescence and phosphorescence
			5.3. Raman spectroscopy
		6. Conclusion
		References
	Chapter 19 Mossbauer Spectroscopy
		1. Introduction
		2. Emitter Source in Mossbauer Spectroscopy
		3. Experimental Setup for Mossbauer Spectroscopy
		4. Factors Responsible for Shift in Energy Levels
			4.1. Isomer shift
			4.2. Nuclear quadrupole splitting
			4.3. Application to mixed valence states
			4.4. Splitting due to hyperfine interaction
		5. Conclusion
		References
Part V Phase Transition
	Chapter 20 Phase Transitions
		1. Introduction
		2. Gibbs Free Energy and Chemical Potential
		3. Chemical Potential
		4. Phase Equilibrium in a Single-Component System
		5. Phase Diagram
		6. Clausius–Clapeyron Relation and the Shape of the Coexistence Curves
			6.1. Latent heat
		7. Symmetry Aspects of Phase Diagram
		8. Classification of Phase Transitions
		9. Van der Waals Equation of State
		10. Critical Point Phenomenon
		11. Weiss Theory of Paramagnetic–Ferromagnetic Phase Transition
		12. Experimental Techniques for Phase Transitions Studies
			12.1. Differential thermal analysis
				12.1.1. Experimental setup
				12.1.2. Typical experimental data
			12.2. Differential scanning calorimeter
				12.2.1. Heat flux DSC
				12.2.2. Power-compensated DSC
			12.3. Ferromagnetic–paramagnetic transition in nickel studied through high-resolution resistivity technique
				12.3.1. Experimental setup
			12.4. Ferroelectric–paraelectric transition in modified barium titanate
				12.4.1. Experimental arrangement
				12.4.2. Ferro–para transition in modified barium titanate
			12.5. Martensite–austenite phase transition in a shape memory alloy
				12.5.1. Experimental
		References
Index




نظرات کاربران