ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Exergy Analysis and Thermoeconomics of Buildings: Design and Analysis for Sustainable Energy Systems

دانلود کتاب تحلیل اکسرژی و اقتصاد حرارتی ساختمان ها: طراحی و تحلیل برای سیستم های انرژی پایدار

Exergy Analysis and Thermoeconomics of Buildings: Design and Analysis for Sustainable Energy Systems

مشخصات کتاب

Exergy Analysis and Thermoeconomics of Buildings: Design and Analysis for Sustainable Energy Systems

ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0128176113, 9780128176115 
ناشر: Butterworth-Heinemann Inc 
سال نشر: 2019 
تعداد صفحات: 1091 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 54 مگابایت 

قیمت کتاب (تومان) : 37,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Exergy Analysis and Thermoeconomics of Buildings: Design and Analysis for Sustainable Energy Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تحلیل اکسرژی و اقتصاد حرارتی ساختمان ها: طراحی و تحلیل برای سیستم های انرژی پایدار نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تحلیل اکسرژی و اقتصاد حرارتی ساختمان ها: طراحی و تحلیل برای سیستم های انرژی پایدار



کمیت‌سازی تلفات اکسرژی در سیستم تامین انرژی ساختمان‌ها پتانسیل بهبود انرژی را نشان می‌دهد که با استفاده از تجزیه و تحلیل انرژی متعارف نمی‌توان آن را کشف کرد. ترمواکونومیک تجزیه و تحلیل اقتصادی و ترمودینامیکی را با به کار بردن مفهوم هزینه (یک مفهوم اقتصادی) برای اگزرژی ترکیب می کند، زیرا اگزرژی یک ویژگی ترمودینامیکی مناسب برای این منظور است، به این ترتیب که کمیت انرژی را با فاکتور کیفیت آن ترکیب می کند.

تحلیل اکسرژی و اقتصاد حرارتی ساختمان هاروش های تحلیل اکسرژی و اقتصاد حرارتی را در محیط ساخته شده به کار می برد. مکانیسم‌های انتقال حرارت در سراسر پوشش ساختمان‌ها از منظر اگزرژی و سپس به تأسیسات حرارتی ساختمان، تجزیه و تحلیل اجزای مختلف مانند دیگ‌های چگالشی، یخچال‌های جذبی، نیروگاه‌های میکروکوژنراسیون و غیره، از جمله تأسیسات خورشیدی و در نهایت حرارتی، تحلیل می‌شوند. امکانات به عنوان یک کل.

تجزیه و تحلیل دقیقی از فرآیند تشکیل هزینه ارائه شده است که ریشه های فیزیکی خود را محکم در قانون دوم ترمودینامیک دارد. اصول اولیه و قواعد تخصیص هزینه، در واحدهای انرژی (هزینه اگزرژی)، در واحدهای پولی (هزینه اگزرژواکونومیک)، و در انتشار CO2 (هزینه برون‌محیطی)، بر اساس نظریه هزینه اگزرژی ارائه شده و برای حرارتی اعمال می‌شود. نصب و راه اندازی ساختمانها.

در توضیح واضح و دقیق، تحلیل اکسرژی و اقتصاد حرارتی ساختمانهاتحلیل اکسرژی و اقتصاد حرارتی و نقشی که آنها می توانند در تجزیه و تحلیل و طراحی اجزای ساختمان ایفا کنند بحث می کند. اعم از پاکت یا تاسیسات حرارتی و همچنین تشخیص تاسیسات حرارتی. این کتاب به تدریج از معرفی مفاهیم اولیه به استفاده از آنها حرکت می کند.

تحلیل اکسرژی و اقتصاد حرارتی ساختمان ها نمونه هایی از موارد خاص را در سراسر این کتاب ارائه می دهد. این موارد شامل داده های واقعی است، به طوری که نتایج به دست آمده برای تفسیر ناکارآمدی ها و تلفاتی که واقعاً در تاسیسات واقعی رخ می دهد مفید است. از این رو، ارزیابی اثرات آنها روشی برای بهبود کارایی را تشویق می کند.


توضیحاتی درمورد کتاب به خارجی

Quantifying exergy losses in the energy supply system of buildings reveals the potential for energy improvement, which cannot be discovered using conventional energy analysis. Thermoeconomics combines economic and thermodynamic analysis by applying the concept of cost (an economic concept) to exergy, as exergy is a thermodynamic property fit for this purpose, in that it combines the quantity of energy with its quality factor.

Exergy Analysis and Thermoeconomics of Buildings applies exergy analysis methods and thermoeconomics to the built environment. The mechanisms of heat transfer throughout the envelope of buildings are analyzed from an exergy perspective and then to the building thermal installations, analyzing the different components, such as condensing boilers, absorption refrigerators, microcogeneration plants, etc., including solar installations and finally the thermal facilities as a whole.

A detailed analysis of the cost formation process is presented, which has its physical roots firmly planted in the second law of thermodynamics. The basic principles and the rules of cost allocation, in energy units (exergy cost), in monetary units (exergoeconomic cost), and in CO2 emissions (exergoenvironmental cost), based on the so-called Exergy Cost Theory are presented and applied to thermal installations of buildings.

Clear and rigorous in its exposition, Exergy Analysis and Thermoeconomics of Buildings discusses exergy analysis and thermoeconomics and the role they could play in the analysis and design of building components, either the envelope or the thermal facilities, as well as the diagnosis of thermal installations. This book moves progressively from introducing the basic concepts to applying them.

Exergy Analysis and Thermoeconomics of Buildings provides examples of specific cases throughout this book. These cases include real data, so that the results obtained are useful to interpret the inefficiencies and losses that truly occur in actual installations; hence, the assessment of their effects encourages the manner to improve efficiency.



فهرست مطالب

Cover
Exergy Analysis and Thermoeconomics of  Buildings: Design and Analysis for Sustainable
Energy Systems
Copyright
Dedication
Biography
Preface
Acknowledgement
Section A: Foundations of exergy theory
1 -
Efficient buildings and the arguments for incorporating exergy
	1.1 Summary
	1.2 Concept and laws of energy
	1.3 Energy sources. Fossil and renewable energies
	1.4 Energy chains
	1.5 Energy and sustainability
		1.5.1 Life cycle
		1.5.2 Externalities
		1.5.3 Limited nature of natural resources
	1.6 Energy and the building sector
		1.6.1 The building as an energy system
			1.6.1.1 Demand
			1.6.1.2 System components
			1.6.1.3 Energy sources
		1.6.2 Energy consumption data in buildings
	1.7 Current regulatory environment regarding energy in buildings
		1.7.1 Directives of the European Union
		1.7.2 Transposition to Spanish legislation
	1.8 New materials in buildings
		1.8.1 Thermal insulation
		1.8.2 Glass
		1.8.3 Other materials
	1.9 New types of building skins
		1.9.1 Advanced integrated façades
		1.9.2 Green roofs and green façades
		1.9.3 Different types of inertial systems
		1.9.4 Thermo-active slabs
		1.9.5 Thermo-active foundations
		1.9.6 Active glazing
		1.9.7 Envelopes with phase change materials
		1.9.8 Dynamic insulation
	1.10 New thermal installations
		1.10.1 Condensing boilers
		1.10.2 Biomass boilers
		1.10.3 Heat pumps
		1.10.4 Solar collectors
		1.10.5 Ventilation systems
		1.10.6 Cogeneration
		1.10.7 Trigeneration
		1.10.8 Energy storage
		1.10.9 Hybrid installations
		1.10.10 District heating and cooling systems
		1.10.11 Intelligent control
	1.11 The integrated design process
		1.11.1 Phase 1 - where and what to build
		1.11.2 Phase 2 - preliminary design
		1.11.3 Phase 3 - design of the building and preliminary evaluation
		1.11.4 Phase 4 - control for optimized operation
	1.12 Arguments for incorporating exergy in buildings
		1.12.1 Some basic notions about exergy
		1.12.2 Characteristics of exergy
		1.12.3 The need for an exergy methodology
		1.12.4 Exergy and economic aspects
		1.12.5 Exergy and the environment
		1.12.6 Exergy and the Administrations
		1.12.7 Limitations of exergy analysis
	1.13 Brief history of exergy use in buildings
	1.14 The road towards sustainable buildings
	References
2 -
Quality of energy and exergy
	2.1 Summary
	2.2 Brief introduction to Thermodynamics and its different formulations
		2.2.1 Different formulations of Thermodynamics
		2.2.2 The Thermodynamics of Irreversible Processes
		2.2.3 Some considerations on Statistical Thermodynamics
		2.2.4 Thermodynamics and energy
	2.3 The First Law of Thermodynamics
		2.3.1 Energy balance in closed systems
		2.3.2 Examples
		2.3.3 Meaning of control volume
		2.3.4 Energy balance in a control volume
		2.3.5 Examples
	2.4 Brief history of the Second Law of Thermodynamics
	2.5 Review of the concept of entropy
		2.5.1 Entropy generation
		2.5.2 Entropy change of the universe
			2.5.2.1 Examples
	2.6 Different quality of energy
	2.7 The environment and natural resources
	2.8 Reference environment
	2.9 Exergy by heat transfer
		2.9.1 Examples
	2.10 Available work and physical exergy of a closed system
		2.10.1 Available work
		2.10.2 Physical exergy
	2.11 Exergy destruction in irreversible processes
	2.12 Exergy balance in a closed system
		2.12.1 Examples
	2.13 Physical flow exergy
		2.13.1 Thermal and mechanical components
	2.14 Exergy balance in a control volume
		2.14.1 Examples
	2.15 Exergy of thermal radiation
		2.15.1 Review of some preliminary concepts
			2.15.1.1 Blackbody radiation
			2.15.1.2 Grey and diffuse surfaces
			2.15.1.3 Absorptivity, reflectivity and transmissivity
			2.15.1.4 Kirchhoff’s law
			2.15.1.5 Greenhouse effect
		2.15.2 Thermodynamics of blackbody radiation
		2.15.3 Exergy of blackbody radiation
		2.15.4 Rate of exergy destruction in radiation exchange
		2.15.5 Exergy of solar radiation
		2.15.6 Examples
	2.16 Benefits of the exergy analysis method
		2.16.1 Different definitions of exergy efficiency
	2.17 Mechanisms of irreversibilities
		2.17.1 Exergy destruction due to mechanical irreversibilities
		2.17.2 Exergy destruction due to thermal irreversibilities
		2.17.3 Exergy destruction due to chemical irreversibilities
			2.17.3.1 Same substance at different temperatures
			2.17.3.2 Mixture of different substances
			2.17.3.3 Chemical reactions
	Superscripts
	Subscripts
	Symbols
	Constants
	References
3 -
Calculation of physical and chemical exergy
	3.1 Summary
	3.2 Calculation of physical exergy
		3.2.1 Physical exergy of an ideal gas
		3.2.2 Physical exergy of a mixture of ideal gases
		3.2.3 Physical exergy of humid air
		3.2.4 Physical exergy of incompressible solids and fluids
		3.2.5 Physical exergy of liquid-vapour mixtures
		3.2.6 Calculation of physical exergy through departure properties
		3.2.7 Examples
	3.3 Modelling the reference environment
		3.3.1 Reference environment associated with process
		3.3.2 Reference environment in internal equilibrium
		3.3.3 Reference environment based on stability
		3.3.4 Reference environment in buildings
	3.4 Some thermodynamic notions of multicomponent systems
		3.4.1 Definition of chemical potential
		3.4.2 Standard states
		3.4.3 Enthalpy of formation
		3.4.4 Enthalpy of reaction and entropy of reaction
		3.4.5 Gibbs function of formation and Gibbs function of reaction
		3.4.6 Maximum work and change of Gibbs function
	3.5 Calculation of standard chemical exergy
		3.5.1 Substances present in the RE
		3.5.2 Substances not present in the RE
			3.5.2.1 Calculation of the standard chemical exergy by the general method
			3.5.2.2 Alternative method
		3.5.3 Examples
	3.6 Chemical exergy of substances of interest in buildings
		3.6.1 Exergy of construction materials
		3.6.2 Exergy of water
		3.6.3 Exergy of the combustion gases in a boiler
		3.6.4 Exergy of humid air
		3.6.5 Exergy of a mixture of real gases
		3.6.6 Chemical exergy of fuels
		3.6.7 Examples
	Superscripts
	Subscripts
	Symbols
	References
Section B: Exergy analysis of the envelope and thermal installations
4 -
Exergy analysis of heat transfer in buildings
	4.1 Summary
	4.2 Heat exchanges in a building
	4.3 Heat conduction in a wall
		4.3.1 Energy balance
		4.3.2 Exergy balance
		4.3.3 Examples
	4.4 Exergy and inertia of walls
		4.4.1 The concept of thermal inertia
		4.4.2 Inertia and exergy
	4.5 Transport of exergy by convection
		4.5.1 Energy balance
		4.5.2 Exergy balance
		4.5.3 Examples
	4.6 Exchange of radiation exergy between surfaces
		4.6.1 Radiation exergy exchange between two grey surfaces
		4.6.2 Radiation exchange between the interior surfaces of a room
			4.6.2.1 Radiative energy exchange
			4.6.2.2 Radiation exergy exchange
	4.7 Energy and exergy balances on the interior surface of a façade
		4.7.1 Energy balance
		4.7.2 Exergy balance
		4.7.3 Examples
	4.8 Energy and exergy balances in the exterior surface of a façade
		4.8.1 Energy exchanges
			4.8.1.1 Convection coefficient on the exterior surface
			4.8.1.2 Radiation exchange with the sky and surroundings
			4.8.1.3 Equivalent temperature and sun-air temperature
		4.8.2 Exergy balance
		4.8.3 Examples
	4.9 Exergy exchanged by a building through an opaque envelope
		4.9.1 Steady-state method
		4.9.2 Quasi-steady method
		4.9.3 Simplified dynamic method
		4.9.4 Detailed dynamic method
	4.10 Indicator of exergy behaviour of a wall
		4.10.1 Examples
	4.11 Exergy and thermal comfort
		4.11.1 Thermal comfort standards
		4.11.2 Thermal model of the human body and energy balance
		4.11.3 Exergy balance in the human body
	4.12 Energy and exergy demand of a building
		4.12.1 Calculation of energy demand
			4.12.1.1 Gains (losses) of heat
			4.12.1.2 Thermal load and energy demand
			4.12.1.3 Indirect method for calculating energy demand
		4.12.2 Calculation of exergy demand
			4.12.2.1 Preliminary comments
			4.12.2.2 Simplified method
			4.12.2.3 Detailed method
		4.12.3 Examples
	Subscripts
	Symbols
	References
5 -
Exergy analysis of thermal facilities equipment in buildings (I)
	5.1 Summary
	5.2 Introduction
	5.3 Indoor air
	5.4 End elements
		5.4.1 Exergy analysis of a radiator
		5.4.2 Examples
	5.5 Distribution system
		5.5.1 Examples
	5.6 Three-way valves
	5.7 Heat exchangers
		5.7.1 Types and characteristics
		5.7.2 Conventional energy analysis
		5.7.3 Exergy analysis
		5.7.4 Analysis of the mechanisms of irreversibilities
		5.7.5 Examples
	5.8 Heating and DHW boilers
		5.8.1 Types and characteristics
		5.8.2 Classical energy analysis
		5.8.3 Instantaneous and seasonal efficiency
		5.8.4 Exergy analysis
		5.8.5 Examples
	5.9 Heat pumps
		5.9.1 Types and characteristics
		5.9.2 Global energy balance
		5.9.3 Seasonal average efficiency
		5.9.4 Global exergy balance
		5.9.5 Exergy analysis of a vapor-compression cycle
		5.9.6 Examples
	5.10 Cogeneration in buildings
		5.10.1 General comments on cogeneration
		5.10.2 Cogeneration and the energy demand in buildings
		5.10.3 Micro-cogeneration technologies
			5.10.3.1 Internal combustion micromotors
			5.10.3.2 Gas microturbines
			5.10.3.3 Stirling engines
			5.10.3.4 Fuel cells
		5.10.4 Cogeneration with Organic Rankine Cycles (ORC)
		5.10.5 District heating and cooling
		5.10.6 Cogeneration energy parameters
		5.10.7 Cogeneration exergy parameters
		5.10.8 Feasibility of cogeneration in buildings
		5.10.9 Examples
		5.10.10 Some final comments on cogeneration
	5.11 Thermal energy storage systems (TES)
		5.11.1 Preliminary considerations
		5.11.2 Conventional energy analysis
		5.11.3 Exergy analysis
		5.11.4 Examples
	Subscripts
	Symbols
	References
6. Exergy analysis of thermal facilities equipment in buildings (II)
	6.1 Summary
	6.2 Absorption refrigerators
		6.2.1 Types and characteristics
		6.2.2 Simple absorption cycle
		6.2.3 Energy analysis of components
			6.2.3.1 Generator
			6.2.3.2 Absorber
			6.2.3.3 Heat recuperator
			6.2.3.4 Regulation valve
			6.2.3.5 Solution pump
			6.2.3.6 Condenser
			6.2.3.7 Expansion valve
			6.2.3.8 Evaporator
			6.2.3.9 Total cycle
		6.2.4 Exergy analysis of components
			6.2.4.1 Generator
			6.2.4.2 Absorber
			6.2.4.3 Heat recuperator
			6.2.4.4 Regulation valve
			6.2.4.5 Solution pump
			6.2.4.6 Condenser
			6.2.4.7 Expansion valve
			6.2.4.8 Evaporator
			6.2.4.9 Total cycle
		6.2.5 Examples
	6.3 Adsorption cooling systems
		6.3.1 Basic principle of adsorption/desorption
		6.3.2 Operation of a single-effect adsorption system
		6.3.3 Energy and exergy analysis of an adsorption system
		6.3.4 Rotary desiccant dryers
		6.3.5 Energy analysis of an AHU with a rotary desiccant dryer
		6.3.6 Exergy analysis of an AHU with rotary desiccant dryer
			6.3.6.1 Rotary desiccant dryer
			6.3.6.2 Regenerative heat exchanger
			6.3.6.3 Process evaporative cooler
			6.3.6.4 Regeneration evaporative cooler
			6.3.6.5 Regeneration heat battery
			6.3.6.6 Complete AHU system
		6.3.7 Examples
	6.4 Exergy analysis of basic air conditioning processes
		6.4.1 Sensitive heating or cooling
		6.4.2 Dehumidification by cooling
		6.4.3 Humidifying or dehumidifying by mixing with water
		6.4.4 Adiabatic mixture of two flows
		6.4.5 Combination of the basic processes for air conditioning
		6.4.6 Examples
	6.5 Ventilation systems
		6.5.1 Air quality and regulatory development of ventilation in Spain
		6.5.2 Types of ventilation installations
		6.5.3 Heat recuperators
		6.5.4 Energy and exergy analysis of a ventilation system with heat recovery
		6.5.5 Examples
	6.6 Use of solar energy. Photovoltaic and thermal modules
		6.6.1 Types and characteristics of solar photovoltaic cells
		6.6.2 Energy analysis of a solar photovoltaic array
		6.6.3 Exergy analysis of a solar photovoltaic array
		6.6.4 Types and characteristics of solar thermal collectors
		6.6.5 Energy analysis of a solar thermal collector
		6.6.6 Exergy analysis of a solar thermal collector
		6.6.7 Hybrid thermal/photovoltaic modules (PVT)
		6.6.8 Comments on the frame of reference for exergy analysis of solar systems
		6.6.9 Examples
	Subscripts
	Symbols
	References
Section C: Thermoeconomics and symbolic thermoeconomics. Costs and diagnosis of installations
7. Thermoeconomics and its application to buildings
	7.1 Summary
	7.2 Introduction
	7.3 Thermoeconomics
		7.3.1 Brief history of Thermoeconomics
	7.4 The physical structure of the installations
	7.5 Mass, energy and exergy balances
		7.5.1 Examples
	7.6 Productive structure of the installations
		7.6.1 Definition of fuel, product and losses
		7.6.2 New form of exergy balance
		7.6.3 Exergy efficiency and unit exergy consumption
		7.6.4 Dissipative equipment
		7.6.5 Examples
	7.7 Exergy analysis of systems
		7.7.1 Definition of various indexes
		7.7.2 Exergy analysis methodology
	7.8 Cost accounting and exergy
		7.8.1 Exergy cost and exergoeconomic cost
		7.8.2 Review of some basic concepts of engineering economy
		7.8.3 Example of a sequential system
	7.9 Exergy cost theory
		7.9.1 Propositions of Exergy Cost Theory
		7.9.2 Closure of the system of equations
		7.9.3 Exergy cost of fuel and products of the components
		7.9.4 Accumulated exergy cost
		7.9.5 Exergoeconomic costs
		7.9.6 Exergoeconomic costs of fuel and products of components
		7.9.7 Examples
	7.10 Other methods of allocating costs
		7.10.1 Thermoeconomic Functional Analysis
		7.10.2 SPECO method
	Subscripts
	Superscripts
	Scalars
	Matrices and vectors.
	References
8. Symbolic Thermoeconomics applied to thermal facilities
	8.1 Summary
	8.2 Introduction
	8.3 FP representation or supply-driven model
		8.3.1 Expressions for the exergy of the flows
		8.3.2 Expressions for the exergy costs and exergoeconomic costs of flows
		8.3.3 Expressions for the fuel and product of components
		8.3.4 Expression of the installation global efficiency
		8.3.5 Expressions for the exergy costs and exergoeconomic costs of fuel and product
		8.3.6 Examples
	8.4 Representation PF or demand-driven model
		8.4.1 Expressions for the exergies of flows
		8.4.2 Expressions for the fuel and product of components
		8.4.3 Expression of the installation global efficiency
		8.4.4 Expressions for the exergy costs and exergoeconomic costs of fuel and product
		8.4.5 Relationship between FP and PF representations
		8.4.6 Examples
	8.5 FP and PF representations with residues
		8.5.1 The process of residues cost formation
		8.5.2 The negentropy method
		8.5.3 FP(R) formulation
			8.5.3.1 Exergy costs and exergoeconomic costs
		8.5.4 PF(R) formulation
			8.5.4.1 Exergy costs and exergoeconomic costs
		8.5.5 Examples
	8.6 Symbolic Thermoeconomics in thermal installations analysis
	Nomenclature
	References
9. Operational diagnosis of thermal installations in buildings
	9.1 Summary
	9.2 Introduction to energy diagnosis
	9.3 Thermoeconomic diagnosis
		9.3.1 Intrinsic anomalies and induced anomalies
	9.4 Exergy indicators. Impact on fuel
	9.5 Diagnosis through malfunctions and dysfunctions
		9.5.1 Malfunctions and dysfunctions
		9.5.2 Cost of malfunctions
		9.5.3 Inclusion of residues in the diagnosis
		9.5.4 Intrinsic and induced malfunctions
		9.5.5 Filtering malfunctions due to the control system
		9.5.6 Impact on fuel expressed in exergoeconomic costs
		9.5.7 The problem of intrinsic malfunctions detection
		9.5.8 Examples
	9.6 Method of characteristic curves
		9.6.1 Discrimination between the intrinsic and the induced malfunctions
		9.6.2 Examples
	9.7 Advanced exergy theory
		9.7.1 Avoidable and unavoidable exergy destruction and costs
		9.7.2 Endogenous and exogenous exergy destruction
		9.7.3 Applications of Advanced Exergy Theory
		9.7.4 Examples
	Subscripts
	Superscripts
	Scalars
	Matrices and vectors
	References
Section D: Sustainability and exergy in buildings
10. Sustainability and exergy in buildings
	10.1 Summary
	10.2 Considerations concerning sustainability
		10.2.1 Life cycle
		10.2.2 Environmental externalities
		10.2.3 Social externalities
		10.2.4 Limitation of resources
	10.3 Sustainability in buildings
		10.3.1 What is sustainable construction?
	10.4 Conventional methodologies for the analysis of sustainability
		10.4.1 Analysis of environmental risks
		10.4.2 Environmental impact assessment
		10.4.3 Carbon footprint
		10.4.4 Environmental product declaration
		10.4.5 Environmental audit
		10.4.6 Cumulative energy content
		10.4.7 Life cycle assessment (LCA)
			10.4.7.1 LCA stages
				10.4.7.1.1 Definition of objectives and scope
				10.4.7.1.2 Life Cycle Inventory
				10.4.7.1.3 Impact assessment
				10.4.7.1.4 Evaluation and interpretation of results
		10.4.8 Examples
	10.5 Exergy and sustainability
		10.5.1 Exergy as a method of resources characterization
		10.5.2 Exergy as a method of emissions characterization
	10.6 Exergy methodologies for the analysis of sustainability
		10.6.1 Cumulative exergy content
		10.6.2 Emergy analysis
		10.6.3 Exergy life cycle assessment
		10.6.4 Extended exergy accounting
		10.6.5 Exergoenvironmental analysis
		10.6.6 Examples
	Superscripts
	Symbols
	References
11. Application of exergecoeconomic and exergoenvironmental analysis to several cases of building thermal installations
	11.1 Overview
	11.2 Introduction
	11.3 Case 1: heating and DHW facility with natural gas boilers
		11.3.1 Description of the building and its thermal facility
		11.3.2 Heating and DHW demands
		11.3.3 Functional analysis
		11.3.4 Energy analysis
		11.3.5 Exergy analysis
		11.3.6 Exergy costs
		11.3.7 Exergoeconomic costs
		11.3.8 Impact on CO2 emissions
	11.4 Case 2: heating and DHW facility with geothermal heat pump
		11.4.1 Description of the building and its thermal facility
		11.4.2 Heating and DHW demands
		11.4.3 Functional analysis
		11.4.4 Energy analysis
		11.4.5 Exergy analysis
		11.4.6 Exergy costs
		11.4.7 Exergoeconomic costs
		11.4.8 Impact on CO2 emissions
	11.5 Case 3: heating and DHW facility with boiler and CHP
		11.5.1 Description of the building and its thermal facility
		11.5.2 Heating and DHW demands
		11.5.3 Functional analysis
		11.5.4 Energy analysis
		11.5.5 Exergy analysis
		11.5.6 Exergy costs
		11.5.7 Exergoeconomic costs
		11.5.8 Impact on CO2 emissions
	11.6 Case 4: trigeneration facility of a hospital
		11.6.1 Description of the building and its facility
		11.6.2 Functional analysis
		11.6.3 Energy analysis
		11.6.4 Exergy analysis
		11.6.5 Exergy costs
		11.6.6 Exergoeconomic costs
		11.6.7 Impact on CO2 emissions
	Subscript
	Superscript
	Scalars
	Matrices and vectors
	References
Section E: Design and thermoeconomics in buildings
12. Design and optimization of the envelope and thermal installations of buildings
	12.1 Summary
	12.2 Introduction
	12.3 Modelling and simulation
	12.4 Stages in the thermal systems design process
		12.4.1 The problem of synthesis
	12.5 Mathematical formulation of optimization
		12.5.1 Mathematical background
	12.6 Different mathematical optimization methods
		12.6.1 Decomposition methods in complex problems
	12.7 Optimization in the design of thermal installations in buildings
		12.7.1 Simple optimization problems
		12.7.2 Equipment selection with optimal efficiency
		12.7.3 Choosing the best alternative
		12.7.4 Equipment cost functions
		12.7.5 Optimization of thermal installations operation mode
		12.7.6 Solution of the optimization problem
		12.7.7 Examples
	12.8 Application of Thermoeconomics to the design of thermal systems in buildings
		12.8.1 Thermoeconomic optimization through calculus
		12.8.2 Local optimization based on the Thermoeconomic Isolation Principle
		12.8.3 Heuristic method by successive approximations
		12.8.4 Examples
	12.9 Energy renovation of buildings
		12.9.1 Envelope renovation
		12.9.2 Legislation relating to the buildings energy renovation
			12.9.2.1 European Union Directives
			12.9.2.2 Spanish legislation
		12.9.3 Simulation and optimization tools for renovation
		12.9.4 Renovation optimization searching for the nZEB building
		12.9.5 Renovation optimization based on Thermoeconomics
		12.9.6 Examples
	Subscripts
	Superscripts
	Nomenclature
	References
Section F: Exergy in the thermodynamics of continuous media
13. Exergy in continuous media. Application to equipment design
	13.1 Summary
	13.2 Introduction
	13.3 Brief review of some notions of fluid mechanics
		13.3.1 Material and spatial description of the motion
		13.3.2 Meaning of the material derivative
		13.3.3 Transport theorem
		13.3.4 Stress tensor
		13.3.5 The notion of continuum in multicomponent systems
		13.3.6 Considerations concerning turbulence
	13.4 Conservation of mass
		13.4.1 Continuity equation
		13.4.2 Continuity equation in multicomponent systems
		13.4.3 Control volume mass balance
	13.5 Energy balance
		13.5.1 Energy local balance
		13.5.2 Energy local balance in multicomponent systems
		13.5.3 Some particular cases of interest
		13.5.4 Control volume energy balance
	13.6 Entropy balance
		13.6.1 Some consequences of the entropy local balance
		13.6.2 Entropy local balance in multicomponent systems
		13.6.3 Control volume entropy balance
	13.7 Introduction to Onsager theory
	13.8 Exergy in continuous media
		13.8.1 Control mass exergy balance
		13.8.2 Physical exergy local balance
		13.8.3 Chemical exergy local balance
		13.8.4 Control volume exergy balance
		13.8.5 Exergy balance in multicomponent systems
		13.8.6 Examples
	13.9 Exergy cost in continuous media
		13.9.1 Local exergy cost balance
	Superscripts
	Subscripts
	Nomenclature
	References
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z
Back Cover




نظرات کاربران