ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Evolutionary Neuroscience

دانلود کتاب عصب شناسی تکاملی

Evolutionary Neuroscience

مشخصات کتاب

Evolutionary Neuroscience

ویرایش: 2 
نویسندگان:   
سری:  
ISBN (شابک) : 0128205849, 9780128205846 
ناشر: Academic Press 
سال نشر: 2020 
تعداد صفحات: 923 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 36 مگابایت 

قیمت کتاب (تومان) : 32,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 8


در صورت تبدیل فایل کتاب Evolutionary Neuroscience به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب عصب شناسی تکاملی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب عصب شناسی تکاملی



Evolutionary Neuroscience, Second Edition, مجموعه ای از فصول در مورد تکامل مغز است که موضوعات انتخاب شده از مرجع جامع اخیر تکامل سیستم های عصبی را ترکیب می کند (Elsevier, Academic Press ، 2017، https://www.elsevier.com/books/evolution-of-nervous-systems/kaas/978-0-12-804042-3). فصل‌های انتخاب شده طیف گسترده‌ای از موضوعات، از نظریه تاریخی، تا جدیدترین استنتاج‌های حاصل از مطالعات تطبیقی ​​مغزها را پوشش می‌دهند. مقالات در بخش‌هایی با تمرکز بر تاریخ، مفاهیم و نظریه، تکامل مغز از مهره‌داران اولیه تا ماهی‌های امروزی، دوزیستان، خزندگان و پرندگان، تکامل مغز پستانداران، و تکامل مغز پستانداران، از جمله مغز انسان، سازمان‌دهی شده‌اند.

هر فصل توسط یک رهبر یا رهبران حوزه نوشته شده است. موضوعات خاص شامل بازسازی شخصیت مغز، اصول مقیاس بندی مغز، ویژگی های اساسی مغز مهره داران، تکامل سیستم های حسی اصلی، سایر بخش های مغز، آنچه می توانیم از فسیل ها بیاموزیم، منشا نئوکورتکس، و تکامل تخصص های انسان است. مغزها مجموعه مقالات برای هر کسی که کنجکاو است که چگونه مغزها از سیستم عصبی ساده‌تر اولین مهره‌داران به اشکال مختلف پیچیده‌ای که اکنون در مهره‌داران امروزی یافت می‌شوند، تکامل یافته، جالب خواهد بود.


توضیحاتی درمورد کتاب به خارجی

Evolutionary Neuroscience, Second Edition, is a collection of chapters on brain evolution that combines selected topics from the recent comprehensive reference, Evolution of Nervous Systems (Elsevier, Academic Press, 2017, https://www.elsevier.com/books/evolution-of-nervous-systems/kaas/978-0-12-804042-3). The selected chapters cover a broad range of topics, from historical theory, to the most recent deductions from comparative studies of brains. The articles are organized in sections focused on history, concepts and theory, the evolution of brains from early vertebrates to present-day fishes, amphibians, reptiles and birds, the evolution of mammalian brains, and the evolution of primate brains, including human brains.

Each chapter is written by a leader or leaders in the field. Specific topics include brain character reconstruction, principles of brain scaling, basic features of vertebrate brains, the evolution of the major sensory systems, other parts of brains, what we can learn from fossils, the origin of neocortex, and the evolution of specializations of human brains. The collection of articles will be interesting to anyone who is curious about how brains evolved from the simpler nervous systems of the first vertebrates into the many different complex forms now found in present-day vertebrates.



فهرست مطالب

Evolutionary Neuroscience
Copyright
Contributors
1. A History of Ideas in Evolutionary Neuroscience
	1.1 Common Plan versus Diversity
	1.2 Scala Naturae versus Phylogenetic Bush
	1.3 Relative Size versus Absolute Size
	1.4 Natural Selection versus Developmental Constraints
	1.5 One Law, Many Laws, or None
	1.6 Conclusions and Prospects
	References
	Further Reading
2. Phylogenetic Character Reconstruction
	2.1 Introduction to Character State Reconstruction and Evolution
	2.2 Basic Concepts
		2.2.1 Homology: Similarity Due to Common Ancestry
		2.2.2 Homoplasy: Convergence, Parallelism, and Reversal
		2.2.3 Character State Polarity
		2.2.4 Character or Trait Data
		2.2.5 Adaptation
		2.2.6 Phylogenetic Trees
	2.3 Methods
		2.3.1 Parsimony Optimization of Discrete Traits
		2.3.2 Binary and Multistate Characters
		2.3.3 Squared-Change and Linear Parsimony
		2.3.4 Maximum Likelihood and Bayesian Optimization
		2.3.5 Which Optimization Approach to Use?
		2.3.6 Correlative Comparative Methods
	2.4 Limitations of Methods
	2.5 Conclusions
	References
	Further Reading
3. The Role of Endocasts in the Study of Brain Evolution
	3.1 Introduction
		3.1.1 Crown, Stem, and the Heuristic Potential of Fossil Endocasts
	3.2 Assessing the Anatomical Identity of Endocasts
		3.2.1 Endocranial Cavity as Brain Proxy
		3.2.2 What Anatomical Structures Share the Endocranial Cavity With the Brain and Thus Lower Brain-to-Endocranial Cavity Values?
		3.2.3 Partial Endocasts
	3.3 Endocast Contributions to Comparative Neuroscience
		3.3.1 Comparative Morphology
		3.3.2 Encephalization
		3.3.3 Correlative Change
	3.4 Concluding Remarks
	References
4. Invertebrate Origins of Vertebrate Nervous Systems
	4.1 Introduction
	4.2 Correspondence of Major Brain Regions in Amphioxus and Vertebrates
		4.2.1 Anatomy of the Amphioxus Central Nervous System
		4.2.2 Initial Patterning of the Amphioxus Central Nervous System Is Comparable to That in Vertebrates
		4.2.3 Amphioxus Has Homologs of the Vertebrate Anterior Neural Ridge, Zona Limitans Intrathalamica, and Midbrain/Hindbrain Boundary
		4.2.4 Neuropeptide Expression Helps Reveal Homologies Between the Amphioxus and Vertebrate Brains
		4.2.5 Evolution of Eyes
	4.3 What Structures Did the Vertebrate Brain Invent?
		4.3.1 Neural Crest
		4.3.2 Placodes
	4.4 What About Tunicates?
	4.5 The Roots of the Chordate Nervous System
	4.6 Where Did the Chordate Central Nervous System Come From?
	4.7 Where Did the Ancestral Bilaterian Brain Come From?
	4.8 Prevailing Scenarios for Evolution of the Central Nervous System
	4.9 Conclusion
	Acknowledgment
	References
5. The Nervous Systems of Jawless Vertebrates
	5.1 Introduction
	5.2 General Aspects of the Agnathan Central Nervous System Morphology and Development
	5.3 Forebrain (Secondary Prosencephalon and Diencephalon)
		5.3.1 Secondary Prosencephalon (Telencephalon and Hypothalamus)
			5.3.1.1 Telencephalon
			5.3.1.2 Hypothalamus
		5.3.2 Diencephalon
			5.3.2.1 Prethalamus
			5.3.2.2 Thalamus
			5.3.2.3 Pretectum
			5.3.2.4 Basal Diencephalon
	5.4 Midbrain (Mesencephalon)
	5.5 Hindbrain (Rhombencephalon)
		5.5.1 Somatomotor Zone
		5.5.2 Visceromotor Zone
		5.5.3 Octavolateral System
		5.5.4 General Somatosensory Zone
		5.5.5 Viscerosensory Zone
	5.6 Conclusions and Perspectives
	References
6. The Brains of Cartilaginous Fishes
	6.1 Introduction
	6.2 Neuroecology and Brain Size in Chondrichthyans
	6.3 Evolutionary Changes in Brain Development
		6.3.1 Comparisons in Evo-devo
		6.3.2 Main Stages of Catshark Brain Development
	6.4 Regionalization of the Chondrichthyan Brain Based on Developmental, Genoarchitectonic, and Neurochemical Evidence
		6.4.1 Prosencephalon
			6.4.1.1 Telencephalon
				6.4.1.1.1 Pallium
				6.4.1.1.2 Subpallium
			6.4.1.2 Hypothalamus
			6.4.1.3 Diencephalon
		6.4.2 Mesencephalon
			6.4.2.1 Optic Tectum
			6.4.2.2 Tegmentum
		6.4.3 Rhombencephalon
			6.4.3.1 Cerebellum
	Acknowledgment
	References
	Further Reading
7. The Organization of the Central Nervous System of Amphibians
	7.1 Living Amphibians and Phylogenetic Relationships
	7.2 Amphibian Brains, General Features, and Methods of Study
	7.3 Forebrain
		7.3.1 Telencephalon
			7.3.1.1 Olfactory Bulbs
			7.3.1.2 Pallium
			7.3.1.3 Subpallium
				7.3.1.3.1 Basal Ganglia
				7.3.1.3.2 Amygdaloid Complex
				7.3.1.3.3 Septum and Preoptic Area
		7.3.2 Hypothalamus
			7.3.2.1 Alar Regions
			7.3.2.2 Basal Regions
		7.3.3 Diencephalon
			7.3.3.1 Prosomere p3
			7.3.3.2 Prosomere p2
			7.3.3.3 Prosomere p1
	7.4 Midbrain
		7.4.1 Optic Tectum
		7.4.2 Torus Semicircularis
		7.4.3 Mesencephalic Tegmentum
	7.5 Hindbrain
		7.5.1 Rostral Hindbrain (r0–r1)
		7.5.2 Caudal Hindbrain (r2–r8)
	7.6 Spinal Cord
	Acknowledgments
	References
	Relevant Website
8. The Brains of Reptiles and Birds
	8.1 The Phylogeny of Reptiles and Birds
	8.2 Reptilian and Avian Brains in Numbers
		8.2.1 Brain Size and Cognition: A Difficult Relation
		8.2.2 Brain Sizes in Reptilian and Avian Species
		8.2.3 Neuron Numbers and Scaling Rules
	8.3 The Structures of the Reptilian and the Avian Brain
		8.3.1 The Sauropsid Spinal Cord
			8.3.1.1 Reptilian and Avian Spinal Cords: Invariant Organization Despite Variances of Behavior
			8.3.1.2 The Mystery and the Sobering Reality of the Sacral Brain
		8.3.2 Mesencephalon
			8.3.2.1 The Infrared System of Snakes: Seeing the Heat
			8.3.2.2 The Centrifugal Visual System: What the Brain Tells the Eye
				8.3.2.2.1 The Centrifugal Visual System of Reptiles
				8.3.2.2.2 The Centrifugal Visual System of Birds
			8.3.2.3 Projections of the Optic Tectum: From Retinotopy to Functionotopy
		8.3.3 Telencephalon
			8.3.3.1 The Sauropsid Basal Ganglia
			8.3.3.2 The Reptilian Pallium
				8.3.3.2.1 The Reptilian Dorsal Cortex
				8.3.3.2.2 The Reptilian Dorsal Ventricular Ridge
			8.3.3.3 The Small World of the Avian Pallium
				8.3.3.3.1 The Avian Wulst
				8.3.3.3.2 The Avian Dorsal Ventricular Ridge
					8.3.3.3.2.1 The Avian Premotor Arcopallium and the Pallial Amygdala
					8.3.3.3.2.2 The Arcopallium as a Premotor Center of the Avian Dorsal Ventricular Ridge
						8.3.3.3.2.2.1 The Avian Pallial Amygdala
					8.3.3.3.2.3 Layers in a Nonlaminated Forebrain
					8.3.3.3.2.4 The Avian “Prefrontal Cortex”
	8.4 Functional Systems
		8.4.1 Ascending Visual Systems
			8.4.1.1 The Thalamofugal Visual Pathway in Reptiles and Birds
			8.4.1.2 The Tectofugal Visual Pathway in Birds and Reptiles
		8.4.2 Ascending Somatosensory Systems
		8.4.3 The Olfactory System
			8.4.3.1 The Olfactory System of Birds
			8.4.3.2 The Olfactory System of Reptiles
		8.4.4 Ascending Auditory Systems
		8.4.5 The Avian Song System
	8.5 Conclusion
	References
9. Function and Evolution of the Reptilian Cerebral Cortex
	9.1 Introduction
		9.1.1 Reptile Phylogeny
		9.1.2 What Is the Cerebral Cortex?
			9.1.2.1 Pallium Versus Cortex
			9.1.2.2 Pallial Subdivisions
			9.1.2.3 Some Essential Features of the Cerebral Cortex
				9.1.2.3.1 Reptilian Cortex
		9.1.3 Functional Architecture of Sensory Pathways to the Pallium in Reptiles
		9.1.4 “Model Species” and the Need for Experimental Diversity
	9.2 Cell Types in Reptilian Cortex
		9.2.1 Retinal Cell Types in Turtles, Ex Vivo Preparations of Nervous System in Reptiles
		9.2.2 Cell Types in the Cerebral Cortex, With a Focus on Interneurons
		9.2.3 Some Limitations of Cell Classification
	9.3 Comparing Brain Areas and Cell Types Across Species
		9.3.1 Theories of Cortical Evolution and Their Predictions
		9.3.2 Conclusions: Simplicity, Evolution, and Function of the Reptilian Cortex
	References
10. The Cerebellum of Nonmammalian Vertebrates
	10.1 Introduction
	10.2 Gross Morphology of the Cerebellum
		10.2.1 Agnathans
		10.2.2 Cartilaginous Fishes
		10.2.3 Amphibians and Nonavian Reptiles
		10.2.4 Birds
		10.2.5 Lobed-Finned Fishes
		10.2.6 Ray-Finned Fishes
	10.3 Cellular Organization of the Cerebellum
	10.4 Variation in Relative Cerebellar Size and Cerebellar Foliation
	10.5 Sagittal Zones of the Cerebellum
	10.6 Conclusions and Future Directions
	References
11. The Emergence of Mammals
	11.1 Introduction
	11.2 The Emergence of an Evolutionary View of Mammalia
	11.3 The Phylogenetic System
	11.4 The Ancestral Amniote
	11.5 Pan-Mammalian History
		11.5.1 Node 1: Synapsida
		11.5.2 Node 2: Unnamed
		11.5.3 Node 3: Sphenacodontia
		11.5.4 Node 4: Therapsida
		11.5.5 Node 5: Eutherapsida
		11.5.6 Node 6: Unnamed
		11.5.7 Node 7: Unnamed
		11.5.8 Node 8: Eutheriodontia
		11.5.9 Node 9: Cynodontia
		11.5.10 Node 10: Eucynodontia
		11.5.11 Node 11: Unnamed
		11.5.12 Node 12: Unnamed
		11.5.13 Node 13: Unnamed
		11.5.14 Node 14: Mammaliamorpha
		11.5.15 Node 15: Mammaliaformes
		11.5.16 Node 16: Unnamed
		11.5.17 Node 17: Crown Clade Mammalia
	11.6 Discussion
	References
12. Mammalian Evolution: The Phylogenetics Story
	12.1 Introduction
	12.2 The Evolutionary Tree of Mammals
		12.2.1 The Historical Perspective
		12.2.2 The Mammal Tree Today
		12.2.3 The Way Forward
	12.3 Applying Tree-Thinking to Question in Neurobiology
	12.4 Conclusions
	References
13. The Organization of Neocortex in Early Mammals
	13.1 Introduction
	13.2 The Mammalian Family Tree
	13.3 Dorsal Cortex of Reptiles and Neocortex
	13.4 What the Fossil Record Tells About Brains and Behavior in Early Mammals
	13.5 Which Brains Should Be Studied?
	13.6 Monotremes
	13.7 Marsupials
	13.8 Placental Mammals
	13.9 Summary and Conclusions
	References
14. What Modern Mammals Teach About the Cellular Composition of Early Brains and Mechanisms of Brain Evolution
	14.1 Introduction
	14.2 The Traditional View: All Brains Are Made of Same
	14.3 The Many Ways of Putting a Brain Together
	14.4 The Many Ways of Putting a Brain in a Mammalian Body
	14.5 The Several Ways of Distributing the Cortical Volume Into Gray and White Matter
	14.6 The Even More Numerous Ways of Distributing the Cortical Volume Into Surface Area and Thickness
	14.7 What Does Not Change due to Biological Constraints
	14.8 What Does Not Change due to Physical Properties
	14.9 Inferences About Early Mammalian Brains and Mechanisms of Brain Evolution
	14.10 What Difference Does It Make?
	14.11 Conclusions
	References
15. Consistencies and Variances in the Anatomical Organization of Aspects of the Mammalian Brain stem
	15.1 Introduction
	15.2 The Midbrain
		15.2.1 The Cranial Nerve Nuclei of the Midbrain
			15.2.1.1 The Oculomotor Nucleus (III)
			15.2.1.2 The Preganglionic Component of the Edinger-Westphal Nucleus
			15.2.1.3 The Trochlear Nucleus (IV)
			15.2.1.4 The Midbrain Portion of the Trigeminal Mesencephalic Nucleus and Tract
		15.2.2 The Main Ascending and Descending Fiber Pathways of the Midbrain
		15.2.3 The Neuromodulatory Nuclei of the Midbrain
			15.2.3.1 The Catecholaminergic Nuclei of the Midbrain
				15.2.3.1.1 The Ventral Tegmental Area Nuclei (A10 Complex)
				15.2.3.1.2 The Substantia Nigra Complex (A9 Complex)
				15.2.3.1.3 The Retrorubral Nucleus (A8)
			15.2.3.2 The Serotonergic Nuclei of the Midbrain
				15.2.3.2.1 The Caudal Linear and Supralemniscal (B9) Nuclei
				15.2.3.2.2 The Median Raphe Nucleus
				15.2.3.2.3 The Dorsal Raphe Nuclear Complex
		15.2.4 The Intrinsic Nuclei of the Midbrain
			15.2.4.1 The Superior Colliculus
			15.2.4.2 The Inferior Colliculus
			15.2.4.3 The Red Nucleus
			15.2.4.4 The Periaqueductal Gray Matter
		15.2.5 The Reticular/Tegmental Nuclei of the Midbrain
	15.3 Pons
		15.3.1 The Cranial Nerve Nuclei of the Pons
			15.3.1.1 The Trigeminal Nerve and Associated Nuclei
			15.3.1.2 The Principal Trigeminal Nucleus
			15.3.1.3 The Pontine Portion of the Trigeminal Mesencephalic Nucleus and Tract
			15.3.1.4 The Trigeminal Motor Nucleus
			15.3.1.5 The Abducens Nerve and Nucleus
			15.3.1.6 The Facial Nerve and Facial Nuclear Complex
		15.3.2 The Ascending and Descending Fiber Pathways of the Pons
		15.3.3 The Neuromodulatory Nuclei of the Pons
			15.3.3.1 The Cholinergic Nuclei of the Pons
			15.3.3.2 The Catecholaminergic Nuclei of the Pons: The Locus Coeruleus Complex
			15.3.3.3 The Serotonergic Nuclei of the Pons
		15.3.4 The Intrinsic Nuclei of the Pons
			15.3.4.1 The Periventricular Gray Matter
			15.3.4.2 The Superior Olivary Complex and Trapezoid Body
			15.3.4.3 The Ventral Pontine Nucleus
		15.3.5 The Reticular/Tegmental Nuclei of the Pons
	15.4 Medulla Oblongata
		15.4.1 The Cranial Nerve Nuclei of the Medulla Oblongata
			15.4.1.1 The Spinal Trigeminal Tract and Associated Nuclei
			15.4.1.2 The Vestibulocochlear Nerve and Cochlear and Vestibular Nuclei
			15.4.1.3 The Nucleus Ambiguus
			15.4.1.4 The Preganglionic Motor Neurons of the Inferior Salivatory Nucleus (pIX)
			15.4.1.5 The Dorsal Motor Vagal Nucleus (X)
			15.4.1.6 The Hypoglossal Nucleus (XII)
		15.4.2 The Ascending and Descending Fiber Pathways of the Medulla Oblongata
		15.4.3 The Neuromodulatory Nuclei of the Medulla Oblongata
			15.4.3.1 The Catecholaminergic Nuclei of the Medulla Oblongata
			15.4.3.2 The Serotonergic Nuclei of the Medulla Oblongata
		15.4.4 The Intrinsic Nuclei of the Medulla Oblongata
			15.4.4.1 The Inferior Olivary Nuclear Complex
			15.4.4.2 The Nuclei of Tractus Solitarius
			15.4.4.3 The Dorsal Column Nuclei
		15.4.5 The Reticular/Tegmental Nuclei of the Medulla Oblongata
	15.5 Consistency and Variation in the Mammalian Brain stem
	References
16. Comparative Anatomy of Glial Cells in Mammals
	16.1 Classification of Glial Cells
	16.2 General Principles of Glial Cell Phenotype and Distribution
		16.2.1 Evolution of the Neuronal Support by Glial Cells
		16.2.2 Glial Cell Phenotype: Cell Processes
			16.2.2.1 Apical Ventricle-Contacting Processes (Type I Processes)
			16.2.2.2 Basal Endfoot-Bearing Pia- and Vessel-Contacting Processes (Type II Processes)
			16.2.2.3 Lateral Neuron-Contacting Processes (Type III Processes)
				16.2.2.3.1 Processes of Protoplasmic Astrocytes
				16.2.2.3.2 Processes of Fibrous Astrocytes
				16.2.2.3.3 Processes of Velate Astrocytes
		16.2.3 Glial Cell Phenotype in Development
		16.2.4 Glial Cells in Adult Neurogenesis
		16.2.5 Functional Astrocytic Syncytia
		16.2.6 Glioneuronal Domains of Information Processing
		16.2.7 Analysis of Glial Cell Morphology
	16.3 Macroglia of the Central Nervous System Including the Retina
		16.3.1 Radial Glia of the Mature Central Nervous System
			16.3.1.1 Tanycytes
			16.3.1.2 Müller Cells
		16.3.2 Astrocytes
		16.3.3 Diacytes
		16.3.4 Ependymoglia, Choroid Plexus Cells, and Retinal Pigment Epithelial Cells
		16.3.5 Oligodendroglia
			16.3.5.1 Oligodendroglia Development
			16.3.5.2 Oligodendroglia in Axonal Injury
	16.4 Microglia
		16.4.1 Resting Microglia
		16.4.2 Activated Microglia
	16.5 Glia of the Peripheral Nervous System
		16.5.1 Schwann Cells
		16.5.2 Satellite Cells
		16.5.3 Enteric Glia
		16.5.4 Glia in Peripheral Sensory Epithelia
	References
17. The Monotreme Nervous System
	17.1 Introduction
	17.2 Evolution and Fossil Record of Monotremes
		17.2.1 The First Monotreme
		17.2.2 The Monotreme Fossil Record
		17.2.3 Which Monotreme Body Form Is the Oldest?
	17.3 What is Different About Monotremes From Other Mammals?
		17.3.1 Reproduction
		17.3.2 Body Temperature and Metabolism
		17.3.3 Monotreme Cognition
	17.4 Electroreception and Mechanoreception
		17.4.1 Overview of the Trigeminal System
		17.4.2 Peripheral Receptors
		17.4.3 Trigeminal Ganglion and Sensory Nuclei
		17.4.4 Thalamus and Cortex
		17.4.5 Electroreception and Mechanoreception in the Natural Setting
	17.5 The Olfactory System in Monotremes
		17.5.1 Overview of Monotreme Olfactory System Structure
		17.5.2 The Olfactory Receptor Gene Repertoire of Monotremes
	17.6 The Cortex in Monotremes
		17.6.1 Cortical Topography and Functional Areas
		17.6.2 Thalamocortical Relationships
		17.6.3 Is There a Monotreme Claustrum?
		17.6.4 Cellular Composition and Neuronal Structure
	17.7 Nervous System Development in Monotremes
		17.7.1 Overview of Monotreme Development
		17.7.2 Trigeminal System Development
		17.7.3 Cortical Development
	17.8 Conclusions. Not Primitive, Just Different!
		17.8.1 Monotremes, Like All Other Mammals, Present a Mosaic of Primitive and Derived Features
		17.8.2 What Can Monotremes Tell Us About Mammalian Brain Evolution?
	Acknowledgment
	References
18. Evolution of Flight and Echolocation in Bats
	18.1 Introduction
	18.2 Evolution of Bat Flight
	18.3 Evolution of Bat Echolocation
	Acknowledgments
	References
19. Carnivoran Brains: Effects of Sociality on Inter- and Intraspecific Comparisons of Regional Brain Volumes
	19.1 Introduction
	19.2 Factors Related to Brain Size Variation
		19.2.1 Principle of Proper Mass
		19.2.2 Social Brain Hypothesis
		19.2.3 Comparative Studies in Carnivorans
	19.3 The Virtual Endocast
		19.3.1 Computed Tomography Analysis
		19.3.2 Regional Brain Volumes
	19.4 Interspecies Comparisons
		19.4.1 Family Hyaenidae
		19.4.2 Family Procyonidae
	19.5 Intraspecies Comparisons
		19.5.1 Family Hyaenidae: Sex Differences in the Spotted Hyena
		19.5.2 Family Procyonidae: Sex Differences in the Coatimundi
		19.5.3 Family Felidae: Sex Differences in Lion and Cougar
	19.6 Limitations
	19.7 Summary and Conclusions
	Acknowledgment
	References
	Relevant Website
20. The Phylogeny of Primates
	20.1 Introduction
	20.2 Primate Origins
	20.3 Order Primates
	20.4 Semiorder Strepsirrhini
	20.5 Semiorder Haplorhini
		20.5.1 Anthropoids
		20.5.2 Platyrrhines (Infraorder Platyrrhini)
		20.5.3 Pitheciids
		20.5.4 Cebids
		20.5.5 Atelids
		20.5.6 Catarrhines (Infraorder Catarrhini)
		20.5.7 Old World Monkeys (Cercopithecoidea)
		20.5.8 Hominoids
	20.6 Broad-Scale Trends in Primate Brain and Sensory Evolution
	References
21. The Expansion of the Cortical Sheet in Primates
	21.1 Cortical Sheet Formation During Development
	21.2 Cortical Sheet Expansion Is Possible in Two Dimensions
	21.3 Emergence of Transit Amplifying Cells in Vertebrate Evolution
	21.4 Emergence of a Further Progenitor Subtype in Mammalian Evolution
	21.5 Principles Underlying the Increase in Progenitor Cell Types and Numbers
	21.6 Insights Into the Possible Adaptive Benefit of Cortical Expansion in Evolution
	References
22. Scaling Up the Simian Primate Cortex: A Conserved Pattern of Expansion Across Brain Sizes
	22.1 Variations in Brain Size Among Simian Primates
	22.2 Mosaic Versus Concerted Evolution
	22.3 Measuring Expansion by Measuring the Size of Areas
	22.4 Measuring Expansion by Surface Registration
	22.5 The Spatial Pattern of Expansion in the Simian Cerebral Cortex
	22.6 The Late Equals Large Principle
	22.7 Characteristics of the Expanded Regions
	22.8 The Reorganization of the Cortex in Primate Evolution
	22.9 Implications of Primate Cortical Expansion
	22.10 Summary
	References
23. Evolution of Visual Cortex in Primates
	23.1 Introduction
	23.2 The Primate Radiation and Other Members of Euarchontoglires
	23.3 The Eye, Retina, and Retinal Projections
	23.4 Primary Visual Cortex V1 or Area 17
	23.5 The Second Visual Area, V2, and Prostriata
	23.6 The Third Visual Area, V3
	23.7 The Dorsomedial Visual Area, DM
	23.8 Area DL or V4
	23.9 The MT Complex (MT, MTc, MST, FSTd, and FSTv)
	23.10 Epilogue
	References
24. The Evolution of Subcortical Pathways to the Extrastriate Cortex
	24.1 Introduction
	24.2 Subcortical Structures Associated With Extrastriate Pathways
		24.2.1 Thalamus
			24.2.1.1 Lateral Geniculate Nucleus
			24.2.1.2 Pulvinar Complex
		24.2.2 Superior Colliculus
	24.3 Extrastriate Cortex
	24.4 Extrageniculostriate Pathways
		24.4.1 Disynaptic Projection From Retina to Extrastriate Cortex via the Lateral Geniculate Nucleus
			24.4.1.1 Diversity of K Cells Across Primates
			24.4.1.2 Retinal Input to Koniocellular/Interlaminar Layers of Lateral Geniculate Nucleus
			24.4.1.3 Superior Colliculus Input to the Lateral Geniculate Nucleus
		24.4.2 Direct Retinal Projections to the Pulvinar With Efferent Targets in Extrastriate Visual Cortex
		24.4.3 The Extrageniculate Pathway Through the Superior Colliculus and Pulvinar
			24.4.3.1 Superior Colliculus Projections to the Pulvinar
				24.4.3.1.1 Superior Collicular Terminals within the Pulvinar
				24.4.3.1.2 Origins of Superior Collicular Projections
			24.4.3.2 Pulvinar Connections With Extrastriate Cortex
	24.5 Role of Extrageniculostriate Pathways Following Ablation of V1
	24.6 Summary
	24.7 Future Perspectives
	References
25. Evolved Mechanisms of High-Level Visual Perception in Primates
	25.1 Introduction
	25.2 Natural Vision
		25.2.1 What Is the Problem?
		25.2.2 Toward a Conceptual Hierarchy for Natural Vision
	25.3 The Ancestry of Primate Visual Abilities
		25.3.1 Mammalian Visual Behaviors
			25.3.1.1 “High-Level” Vision in Nonprimate Mammals
			25.3.1.2 A Shared Understanding of the Body
			25.3.1.3 The Role of Early Visual Experience
		25.3.2 Cortical Visual Specializations in the Mammalian Brain
			25.3.2.1 Principles of Cortical Visual Specialization
			25.3.2.2 Examples of High-Level Visual Specialization in the Mammalian Brain
		25.3.3 Summary
	25.4 Clade-Specific Visual Specializations in Primates
		25.4.1 Adaptations for Social Vision
			25.4.1.1 How Primates Look at Faces
			25.4.1.2 Neural Specializations
				25.4.1.2.1 The fMRI Layout of Social Processing Systems in the Primate Brain
				25.4.1.2.2 Understanding the Activity of Macaque “Face Cells”
				25.4.1.2.3 Mechanisms of Action Perception and Their Importance
		25.4.2 Adaptations for Visually Guided Actions
			25.4.2.1 How Primates Steer Their Hands
			25.4.2.2 Neural Specializations
		25.4.3 Summary
	25.5 Conclusions
	Acknowledgments
	References
26. Evolution of Parietal Cortex in Mammals: From Manipulation to Tool Use
	26.1 Introduction
	26.2 The Use of Long-Train Intracortical Microstimulation to Define Movement Representations in Motor Cortex and Posterior Parie ...
	26.3 Where and What Is Posterior Parietal Cortex in Nonprimate Mammals?
		26.3.1 Rodents
		26.3.2 Carnivores
		26.3.3 Tree Shrews
		26.3.4 Marsupials and Monotremes
		26.3.5 Conclusion
	26.4 Primates
		26.4.1 Brodmann Area 5: Early Studies
			26.4.1.1 Brodmann Area 5: Contemporary Studies
		26.4.2 Brodmann Area 7: Early Studies
			26.4.2.1 Brodmann Area 7: Contemporary Studies
		26.4.3 Somatosensory Input to the Posterior Parietal Cortex in Primates
	26.5 Posterior Parietal Cortex and Tool Use
	26.6 Posterior Parietal Cortex in Humans
	26.7 Conclusion
	References
27. Evolution of Parietal-Frontal Networks in Primates
	27.1 Introduction
	27.2 Parietal-Frontal Networks in Other Primates
	27.3 The Functions of PPC Domains and Parallel Parietal-Frontal Networks
	27.4 The Antecedents of Parietal-Frontal Domains and Networks in the Ancestors of Primates
	References
28. The Evolution of the Prefrontal Cortex in Early Primates and Anthropoids
	28.1 Introduction
		28.1.1 Lunar Primates
		28.1.2 Steps and Leaps
		28.1.3 Terms
		28.1.4 Advances
	28.2 Primate Adaptations
		28.2.1 Early Primates
		28.2.2 Anthropoids
	28.3 New Prefrontal Areas
		28.3.1 Early Primates
			28.3.1.1 Granular Prefrontal Cortex
			28.3.1.2 Terminology
			28.3.1.3 Diversity Denial: General Considerations
			28.3.1.4 Diversity Denial: Specific Issues
				28.3.1.4.1 Thalamic Inputs
				28.3.1.4.2 Dopaminergic Inputs
				28.3.1.4.3 Spatial Memory Impairments
				28.3.1.4.4 Granular Prefrontal Areas in Nonprimates
			28.3.1.5 Supportive Evidence
				28.3.1.5.1 Topology
				28.3.1.5.2 Autonomic Outputs
				28.3.1.5.3 Corticostriatal Projections
				28.3.1.5.4 Sensory Inputs
			28.3.1.6 Summary
		28.3.2 Anthropoids
	28.4 Other Neocortical Areas
		28.4.1 Early Primates
		28.4.2 Anthropoids
	28.5 Size and Shape
		28.5.1 Brain Enlargement in Stem Euprimates
		28.5.2 Brain Enlargement in Anthropoids
		28.5.3 Social Factors
		28.5.4 Summary
	28.6 Cortical Functions and Specializations
		28.6.1 Early Primates
			28.6.1.1 Parietal–Premotor Networks
			28.6.1.2 Granular Orbitofrontal Cortex
			28.6.1.3 Caudal Prefrontal Cortex
			28.6.1.4 Temporal Cortex
			28.6.1.5 Summary
		28.6.2 Anthropoids
			28.6.2.1 Brain Changes and Foraging
			28.6.2.2 Using Events to Reduce Foraging Errors
				28.6.2.2.1 Credit Assignment
				28.6.2.2.2 Discrimination and Reversal Learning Set
				28.6.2.2.3 Object-in-Place Scenes Task
				28.6.2.2.4 Conditional Motor Learning
				28.6.2.2.5 Temporally Extended Events
				28.6.2.2.6 Rules and Strategies
				28.6.2.2.7 Summary
			28.6.2.3 Working Memory and Behavioral Inhibition
				28.6.2.3.1 Against Working-Memory Theory
				28.6.2.3.2 Against Behavioral Inhibition Theory
	28.7 Summary
		28.7.1 Early Primates
		28.7.2 Anthropoids
		28.7.3 From Trees to Tranquility
	References
29. An Introduction to Human Brain Evolutionary Studies
	29.1 Introduction
	29.2 Evolutionary Background
		29.2.1 From the Phylogenetic Scale to the Tree of Life
		29.2.2 Primate and Human Evolution
	29.3 Human Brain Evolution: Classical Views
		29.3.1 Brain Size
		29.3.2 Brain Organization
		29.3.3 The State of the Art Prior to the Current Era
	29.4 Developments in Modern Neuroscience
		29.4.1 The Neuroanatomical Revolution of the 1970s
		29.4.2 The Neuroimaging Revolution
		29.4.3 Parcellation
		29.4.4 Homology and Comparative Analysis
	29.5 Conclusions and Challenges
		29.5.1 Some Lessons Learned
		29.5.2 Opportunities and Challenges for the Future
	References
30. Human Evolutionary History
	30.1 Introduction
	30.2 Comparative Context
	30.3 Fossil Evidence
	30.4 Hominin Taxonomy
	30.5 The Case for Grades Within the Hominin Clade
	30.6 Criteria for Including Taxa Within the Hominin Clade
		30.6.1 Archaic Hominins
		30.6.2 Megadont and Hypermegadont Archaic Hominins
		30.6.3 Transitional Hominins
		30.6.4 Premodern Homo
		30.6.5 Anatomically Modern Homo
	30.7 Different Taxonomic Interpretations
	30.8 Tempo and Mode
	30.9 Temporal Trends in Hominin Brain Size
	30.10 Challenges to Conventional Wisdom
	Appendix 1
	References
31. Evolution of Human Life History
	31.1 Introduction
		31.1.1 Some Definitions
	31.2 Human Life History Stages
	31.3 The Primate Roots of Human Life History
	31.4 Unique and Unusual Features of Humans Life History
	31.5 Reproductive Strategies
	31.6 The Evolution of Hominin Communal Breeding
		31.6.1 From Cooperative/Communal Breeding to Human Biocultural Reproduction
	31.7 Early Weaning and the Childhood Stage of Life History
	31.8 Cognitive Capacities for Nongenetically Based Marriage and Kinship
	31.9 Decreased Lifetime Reproductive Effort
	31.10 When Did Modern Human Life History Evolve?
	31.11 What We Know and What We Need to Know
	31.12 Conclusion
	References
32. The Fossil Evidence of Human Brain Evolution
	32.1 Human Paleoneurology
		32.1.1 Brains and Fossils
		32.1.2 Brains and Endocasts
		32.1.3 Reading Endocasts
		32.1.4 Computing Paleoneurology
		32.1.5 Statistics and the Fossil Record
	32.2 Functional Craniology
		32.2.1 Morphogenesis
		32.2.2 Brain and Braincase
	32.3 Brain Size
		32.3.1 Brain Size and Human Fossils
		32.3.2 Absolute and Relative Brain Size
	32.4 Brain Morphology
		32.4.1 Sulcal Pattern and Brain Proportions
		32.4.2 Frontal Lobes
		32.4.3 Parietal Lobes
		32.4.4 Temporal Lobes
		32.4.5 Occipital Lobes
		32.4.6 Cerebellar Lobes
		32.4.7 The Paleoneurological Variation of the Human Genus
	32.5 Craniovascular Traits and Brain Thermoregulation
		32.5.1 Brain Morphology and Vascular Biology
		32.5.2 Middle Meningeal Artery
		32.5.3 Venous Sinuses
		32.5.4 Diploic Vessels and Emissary Foramina
		32.5.5 Endocranial Thermal Maps
	32.6 Cognition, Fossils, and Future Steps
		32.6.1 Cognitive Archaeology and Neuroarchaeology
		32.6.2 Future Steps in Paleoneurology
	Acknowledgments
	References
33. Remarkable, But Not Special: What Human Brains Are Made of
	33.1 The Former View: The Human Brain Is Special
	33.2 The Human Brain as a Scaled-Up Primate Brain
	33.3 The Energetic Cost of the Human Brain
	33.4 The Expanded Human Cerebral Cortex Does Not Have Relatively More Neurons
	33.5 The Expanded Human Cerebral Cortex Does Not Have Relatively More Neurons in the Prefrontal Region
	33.6 Biological Capabilities × Developed Abilities
	References
34. The Timing of Brain Maturation, Early Experience, and the Human Social Niche
	34.1 Introduction
		34.1.1 “Allometrically Expected”
		34.1.2 Human Exceptionalism
		34.1.3 Life History
	34.2 Comparative Approaches to Translating Time
		34.2.1 Brief Review of Translating Time Methodology
		34.2.2 Crossing Gradients in the Cortex and Their Phylogenetic Significance
		34.2.3 The Case of the Synaptic Surge
		34.2.4 Early and Late Processes in Myelination
		34.2.5 What Are “Critical Periods” in Morphological Terms?
			34.2.5.1 Initial Parameter Setting: One-To-One Connections, Topographic Maps, and Brain–Body Alignment
			34.2.5.2 Genes, Species-Typical Behaviors, and Cortical Areas
			34.2.5.3 Gradients of Activation, Activity, or Cessation of Activity
			34.2.5.4 Summary: Deploy With Military Precision, Then (Eagerly) Sit and Wait
	34.3 Life History
		34.3.1 Construction of Individual Brains Versus Life History Transactions
		34.3.2 Human Birth in Its Primate and Mammalian Contexts
		34.3.3 Human Weaning in Its Primate and Mammalian Contexts
		34.3.4 The Serial Litter and the Social World
	References
	Relevant Websites
35. Human Association Cortex: Expanded, Untethered, Neotenous, and Plastic
	35.1 Association Cortex Is Disproportionately Expanded in Great Apes and Particularly Humans
	35.2 Long-Range Projections Connect Distributed Regions of Association Cortex Together
	35.3 Theories of Areal Patterning
	35.4 The Tethering Hypothesis: Making Sense of the Gaps
	35.5 Determinants of Cortical Expansion and Patterning
	35.6 Activity-Dependent Sculpting Shapes Cortical Territories
	35.7 Intrinsic Developmental Factors Shape Cortical Territories and Their Connectivity
	35.8 Conserved and Divergent Properties of Neocortical Gene Expression Between Rodents and Primates
	35.9 Gene Expression Topography Links to Human Association Networks
	35.10 Spatial Gradients and Sharp Boundaries
	35.11 Conclusions
	References
36. On the Evolution of the Frontal Eye Field: Comparisons of Monkeys, Apes, and Humans
	36.1 Overview
	36.2 Gaze Control and Coordination in Prosimians, Monkeys, Apes, and Humans
	36.3 Variability of Sulci in the Primate Frontal Cortex
	36.4 Location of FEF Across Primate Species
		36.4.1 Scandentia
		36.4.2 Strepsirrhini: Prosimians
			36.4.2.1 Lorisoidea (Galago)
		36.4.3 Haplorrhini: Simians
			36.4.3.1 Platyrrhini (New World Monkey)
				36.4.3.1.1 Callitricidae (Marmoset)
				36.4.3.1.2 Aotidae (Owl Monkey)
				36.4.3.1.3 Saimiriinae (Squirrel Monkey)
				36.4.3.1.4 Cebidae (Capuchin)
		36.4.4 Cercopithecidae (Old World Monkey)
			36.4.4.1 Macaca (Macaque)
			36.4.4.2 Papio (Baboons)
		36.4.5 Hominoidea
			36.4.5.1 Pongo (Orangutan), Gorilla (Gorilla), and Pan (Chimpanzee and Bonobo)
			36.4.5.2 Human
	36.5 Is FEF Located Differently Across Species?
		36.5.1 Comparative Neuroimaging
		36.5.2 Comparative Architecture
		36.5.3 Comparative Sulcal Patterns
	36.6 Conclusion
	Acknowledgments
	References
37. The Evolution of Auditory Cortex in Humans
	37.1 Auditory Cortex: Core, Belt, and Parabelt
		37.1.1 Macaque
		37.1.2 Human
	37.2 Functional Topography of Auditory Cortex
		37.2.1 Hierarchical Processing of Complex Sounds
		37.2.2 Involvement of the Auditory Dorsal Stream in the Processing of Sound Sequences
		37.2.3 Brain Connectivity in Monkeys and Humans
	Acknowledgments
	References
38. Language Evolution
	38.1 An Evolving Landscape
	38.2 Deep Homology
	38.3 Primate Ancestry
	38.4 Tinkering With Our Inheritance
	38.5 Updating the Neurobiological Model for Human Language
	38.6 Conclusion
	Acknowledgments
	References
	Further reading
39. The Search for Human Cognitive Specializations
	39.1 Introduction
	39.2 A Search Strategy for Human Cognitive Specializations
	39.3 A Partial List of Uniquely Human Cognitive Abilities
	39.4 Case Study: Language
	39.5 Case Study: Mindreading
	39.6 Case Study: Culture
	39.7 Conclusion: Narrowing the Search
	References
Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z




نظرات کاربران