دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: Jon H. Kaas (editor)
سری:
ISBN (شابک) : 0128205849, 9780128205846
ناشر: Academic Press
سال نشر: 2020
تعداد صفحات: 923
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 36 مگابایت
در صورت تبدیل فایل کتاب Evolutionary Neuroscience به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب عصب شناسی تکاملی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Evolutionary Neuroscience, Second Edition, مجموعه ای از فصول در مورد تکامل مغز است که موضوعات انتخاب شده از مرجع جامع اخیر تکامل سیستم های عصبی را ترکیب می کند (Elsevier, Academic Press ، 2017، https://www.elsevier.com/books/evolution-of-nervous-systems/kaas/978-0-12-804042-3). فصلهای انتخاب شده طیف گستردهای از موضوعات، از نظریه تاریخی، تا جدیدترین استنتاجهای حاصل از مطالعات تطبیقی مغزها را پوشش میدهند. مقالات در بخشهایی با تمرکز بر تاریخ، مفاهیم و نظریه، تکامل مغز از مهرهداران اولیه تا ماهیهای امروزی، دوزیستان، خزندگان و پرندگان، تکامل مغز پستانداران، و تکامل مغز پستانداران، از جمله مغز انسان، سازماندهی شدهاند.
هر فصل توسط یک رهبر یا رهبران حوزه نوشته شده است. موضوعات خاص شامل بازسازی شخصیت مغز، اصول مقیاس بندی مغز، ویژگی های اساسی مغز مهره داران، تکامل سیستم های حسی اصلی، سایر بخش های مغز، آنچه می توانیم از فسیل ها بیاموزیم، منشا نئوکورتکس، و تکامل تخصص های انسان است. مغزها مجموعه مقالات برای هر کسی که کنجکاو است که چگونه مغزها از سیستم عصبی سادهتر اولین مهرهداران به اشکال مختلف پیچیدهای که اکنون در مهرهداران امروزی یافت میشوند، تکامل یافته، جالب خواهد بود.
Evolutionary Neuroscience, Second Edition, is a collection of chapters on brain evolution that combines selected topics from the recent comprehensive reference, Evolution of Nervous Systems (Elsevier, Academic Press, 2017, https://www.elsevier.com/books/evolution-of-nervous-systems/kaas/978-0-12-804042-3). The selected chapters cover a broad range of topics, from historical theory, to the most recent deductions from comparative studies of brains. The articles are organized in sections focused on history, concepts and theory, the evolution of brains from early vertebrates to present-day fishes, amphibians, reptiles and birds, the evolution of mammalian brains, and the evolution of primate brains, including human brains.
Each chapter is written by a leader or leaders in the field. Specific topics include brain character reconstruction, principles of brain scaling, basic features of vertebrate brains, the evolution of the major sensory systems, other parts of brains, what we can learn from fossils, the origin of neocortex, and the evolution of specializations of human brains. The collection of articles will be interesting to anyone who is curious about how brains evolved from the simpler nervous systems of the first vertebrates into the many different complex forms now found in present-day vertebrates.
Evolutionary Neuroscience Copyright Contributors 1. A History of Ideas in Evolutionary Neuroscience 1.1 Common Plan versus Diversity 1.2 Scala Naturae versus Phylogenetic Bush 1.3 Relative Size versus Absolute Size 1.4 Natural Selection versus Developmental Constraints 1.5 One Law, Many Laws, or None 1.6 Conclusions and Prospects References Further Reading 2. Phylogenetic Character Reconstruction 2.1 Introduction to Character State Reconstruction and Evolution 2.2 Basic Concepts 2.2.1 Homology: Similarity Due to Common Ancestry 2.2.2 Homoplasy: Convergence, Parallelism, and Reversal 2.2.3 Character State Polarity 2.2.4 Character or Trait Data 2.2.5 Adaptation 2.2.6 Phylogenetic Trees 2.3 Methods 2.3.1 Parsimony Optimization of Discrete Traits 2.3.2 Binary and Multistate Characters 2.3.3 Squared-Change and Linear Parsimony 2.3.4 Maximum Likelihood and Bayesian Optimization 2.3.5 Which Optimization Approach to Use? 2.3.6 Correlative Comparative Methods 2.4 Limitations of Methods 2.5 Conclusions References Further Reading 3. The Role of Endocasts in the Study of Brain Evolution 3.1 Introduction 3.1.1 Crown, Stem, and the Heuristic Potential of Fossil Endocasts 3.2 Assessing the Anatomical Identity of Endocasts 3.2.1 Endocranial Cavity as Brain Proxy 3.2.2 What Anatomical Structures Share the Endocranial Cavity With the Brain and Thus Lower Brain-to-Endocranial Cavity Values? 3.2.3 Partial Endocasts 3.3 Endocast Contributions to Comparative Neuroscience 3.3.1 Comparative Morphology 3.3.2 Encephalization 3.3.3 Correlative Change 3.4 Concluding Remarks References 4. Invertebrate Origins of Vertebrate Nervous Systems 4.1 Introduction 4.2 Correspondence of Major Brain Regions in Amphioxus and Vertebrates 4.2.1 Anatomy of the Amphioxus Central Nervous System 4.2.2 Initial Patterning of the Amphioxus Central Nervous System Is Comparable to That in Vertebrates 4.2.3 Amphioxus Has Homologs of the Vertebrate Anterior Neural Ridge, Zona Limitans Intrathalamica, and Midbrain/Hindbrain Boundary 4.2.4 Neuropeptide Expression Helps Reveal Homologies Between the Amphioxus and Vertebrate Brains 4.2.5 Evolution of Eyes 4.3 What Structures Did the Vertebrate Brain Invent? 4.3.1 Neural Crest 4.3.2 Placodes 4.4 What About Tunicates? 4.5 The Roots of the Chordate Nervous System 4.6 Where Did the Chordate Central Nervous System Come From? 4.7 Where Did the Ancestral Bilaterian Brain Come From? 4.8 Prevailing Scenarios for Evolution of the Central Nervous System 4.9 Conclusion Acknowledgment References 5. The Nervous Systems of Jawless Vertebrates 5.1 Introduction 5.2 General Aspects of the Agnathan Central Nervous System Morphology and Development 5.3 Forebrain (Secondary Prosencephalon and Diencephalon) 5.3.1 Secondary Prosencephalon (Telencephalon and Hypothalamus) 5.3.1.1 Telencephalon 5.3.1.2 Hypothalamus 5.3.2 Diencephalon 5.3.2.1 Prethalamus 5.3.2.2 Thalamus 5.3.2.3 Pretectum 5.3.2.4 Basal Diencephalon 5.4 Midbrain (Mesencephalon) 5.5 Hindbrain (Rhombencephalon) 5.5.1 Somatomotor Zone 5.5.2 Visceromotor Zone 5.5.3 Octavolateral System 5.5.4 General Somatosensory Zone 5.5.5 Viscerosensory Zone 5.6 Conclusions and Perspectives References 6. The Brains of Cartilaginous Fishes 6.1 Introduction 6.2 Neuroecology and Brain Size in Chondrichthyans 6.3 Evolutionary Changes in Brain Development 6.3.1 Comparisons in Evo-devo 6.3.2 Main Stages of Catshark Brain Development 6.4 Regionalization of the Chondrichthyan Brain Based on Developmental, Genoarchitectonic, and Neurochemical Evidence 6.4.1 Prosencephalon 6.4.1.1 Telencephalon 6.4.1.1.1 Pallium 6.4.1.1.2 Subpallium 6.4.1.2 Hypothalamus 6.4.1.3 Diencephalon 6.4.2 Mesencephalon 6.4.2.1 Optic Tectum 6.4.2.2 Tegmentum 6.4.3 Rhombencephalon 6.4.3.1 Cerebellum Acknowledgment References Further Reading 7. The Organization of the Central Nervous System of Amphibians 7.1 Living Amphibians and Phylogenetic Relationships 7.2 Amphibian Brains, General Features, and Methods of Study 7.3 Forebrain 7.3.1 Telencephalon 7.3.1.1 Olfactory Bulbs 7.3.1.2 Pallium 7.3.1.3 Subpallium 7.3.1.3.1 Basal Ganglia 7.3.1.3.2 Amygdaloid Complex 7.3.1.3.3 Septum and Preoptic Area 7.3.2 Hypothalamus 7.3.2.1 Alar Regions 7.3.2.2 Basal Regions 7.3.3 Diencephalon 7.3.3.1 Prosomere p3 7.3.3.2 Prosomere p2 7.3.3.3 Prosomere p1 7.4 Midbrain 7.4.1 Optic Tectum 7.4.2 Torus Semicircularis 7.4.3 Mesencephalic Tegmentum 7.5 Hindbrain 7.5.1 Rostral Hindbrain (r0–r1) 7.5.2 Caudal Hindbrain (r2–r8) 7.6 Spinal Cord Acknowledgments References Relevant Website 8. The Brains of Reptiles and Birds 8.1 The Phylogeny of Reptiles and Birds 8.2 Reptilian and Avian Brains in Numbers 8.2.1 Brain Size and Cognition: A Difficult Relation 8.2.2 Brain Sizes in Reptilian and Avian Species 8.2.3 Neuron Numbers and Scaling Rules 8.3 The Structures of the Reptilian and the Avian Brain 8.3.1 The Sauropsid Spinal Cord 8.3.1.1 Reptilian and Avian Spinal Cords: Invariant Organization Despite Variances of Behavior 8.3.1.2 The Mystery and the Sobering Reality of the Sacral Brain 8.3.2 Mesencephalon 8.3.2.1 The Infrared System of Snakes: Seeing the Heat 8.3.2.2 The Centrifugal Visual System: What the Brain Tells the Eye 8.3.2.2.1 The Centrifugal Visual System of Reptiles 8.3.2.2.2 The Centrifugal Visual System of Birds 8.3.2.3 Projections of the Optic Tectum: From Retinotopy to Functionotopy 8.3.3 Telencephalon 8.3.3.1 The Sauropsid Basal Ganglia 8.3.3.2 The Reptilian Pallium 8.3.3.2.1 The Reptilian Dorsal Cortex 8.3.3.2.2 The Reptilian Dorsal Ventricular Ridge 8.3.3.3 The Small World of the Avian Pallium 8.3.3.3.1 The Avian Wulst 8.3.3.3.2 The Avian Dorsal Ventricular Ridge 8.3.3.3.2.1 The Avian Premotor Arcopallium and the Pallial Amygdala 8.3.3.3.2.2 The Arcopallium as a Premotor Center of the Avian Dorsal Ventricular Ridge 8.3.3.3.2.2.1 The Avian Pallial Amygdala 8.3.3.3.2.3 Layers in a Nonlaminated Forebrain 8.3.3.3.2.4 The Avian “Prefrontal Cortex” 8.4 Functional Systems 8.4.1 Ascending Visual Systems 8.4.1.1 The Thalamofugal Visual Pathway in Reptiles and Birds 8.4.1.2 The Tectofugal Visual Pathway in Birds and Reptiles 8.4.2 Ascending Somatosensory Systems 8.4.3 The Olfactory System 8.4.3.1 The Olfactory System of Birds 8.4.3.2 The Olfactory System of Reptiles 8.4.4 Ascending Auditory Systems 8.4.5 The Avian Song System 8.5 Conclusion References 9. Function and Evolution of the Reptilian Cerebral Cortex 9.1 Introduction 9.1.1 Reptile Phylogeny 9.1.2 What Is the Cerebral Cortex? 9.1.2.1 Pallium Versus Cortex 9.1.2.2 Pallial Subdivisions 9.1.2.3 Some Essential Features of the Cerebral Cortex 9.1.2.3.1 Reptilian Cortex 9.1.3 Functional Architecture of Sensory Pathways to the Pallium in Reptiles 9.1.4 “Model Species” and the Need for Experimental Diversity 9.2 Cell Types in Reptilian Cortex 9.2.1 Retinal Cell Types in Turtles, Ex Vivo Preparations of Nervous System in Reptiles 9.2.2 Cell Types in the Cerebral Cortex, With a Focus on Interneurons 9.2.3 Some Limitations of Cell Classification 9.3 Comparing Brain Areas and Cell Types Across Species 9.3.1 Theories of Cortical Evolution and Their Predictions 9.3.2 Conclusions: Simplicity, Evolution, and Function of the Reptilian Cortex References 10. The Cerebellum of Nonmammalian Vertebrates 10.1 Introduction 10.2 Gross Morphology of the Cerebellum 10.2.1 Agnathans 10.2.2 Cartilaginous Fishes 10.2.3 Amphibians and Nonavian Reptiles 10.2.4 Birds 10.2.5 Lobed-Finned Fishes 10.2.6 Ray-Finned Fishes 10.3 Cellular Organization of the Cerebellum 10.4 Variation in Relative Cerebellar Size and Cerebellar Foliation 10.5 Sagittal Zones of the Cerebellum 10.6 Conclusions and Future Directions References 11. The Emergence of Mammals 11.1 Introduction 11.2 The Emergence of an Evolutionary View of Mammalia 11.3 The Phylogenetic System 11.4 The Ancestral Amniote 11.5 Pan-Mammalian History 11.5.1 Node 1: Synapsida 11.5.2 Node 2: Unnamed 11.5.3 Node 3: Sphenacodontia 11.5.4 Node 4: Therapsida 11.5.5 Node 5: Eutherapsida 11.5.6 Node 6: Unnamed 11.5.7 Node 7: Unnamed 11.5.8 Node 8: Eutheriodontia 11.5.9 Node 9: Cynodontia 11.5.10 Node 10: Eucynodontia 11.5.11 Node 11: Unnamed 11.5.12 Node 12: Unnamed 11.5.13 Node 13: Unnamed 11.5.14 Node 14: Mammaliamorpha 11.5.15 Node 15: Mammaliaformes 11.5.16 Node 16: Unnamed 11.5.17 Node 17: Crown Clade Mammalia 11.6 Discussion References 12. Mammalian Evolution: The Phylogenetics Story 12.1 Introduction 12.2 The Evolutionary Tree of Mammals 12.2.1 The Historical Perspective 12.2.2 The Mammal Tree Today 12.2.3 The Way Forward 12.3 Applying Tree-Thinking to Question in Neurobiology 12.4 Conclusions References 13. The Organization of Neocortex in Early Mammals 13.1 Introduction 13.2 The Mammalian Family Tree 13.3 Dorsal Cortex of Reptiles and Neocortex 13.4 What the Fossil Record Tells About Brains and Behavior in Early Mammals 13.5 Which Brains Should Be Studied? 13.6 Monotremes 13.7 Marsupials 13.8 Placental Mammals 13.9 Summary and Conclusions References 14. What Modern Mammals Teach About the Cellular Composition of Early Brains and Mechanisms of Brain Evolution 14.1 Introduction 14.2 The Traditional View: All Brains Are Made of Same 14.3 The Many Ways of Putting a Brain Together 14.4 The Many Ways of Putting a Brain in a Mammalian Body 14.5 The Several Ways of Distributing the Cortical Volume Into Gray and White Matter 14.6 The Even More Numerous Ways of Distributing the Cortical Volume Into Surface Area and Thickness 14.7 What Does Not Change due to Biological Constraints 14.8 What Does Not Change due to Physical Properties 14.9 Inferences About Early Mammalian Brains and Mechanisms of Brain Evolution 14.10 What Difference Does It Make? 14.11 Conclusions References 15. Consistencies and Variances in the Anatomical Organization of Aspects of the Mammalian Brain stem 15.1 Introduction 15.2 The Midbrain 15.2.1 The Cranial Nerve Nuclei of the Midbrain 15.2.1.1 The Oculomotor Nucleus (III) 15.2.1.2 The Preganglionic Component of the Edinger-Westphal Nucleus 15.2.1.3 The Trochlear Nucleus (IV) 15.2.1.4 The Midbrain Portion of the Trigeminal Mesencephalic Nucleus and Tract 15.2.2 The Main Ascending and Descending Fiber Pathways of the Midbrain 15.2.3 The Neuromodulatory Nuclei of the Midbrain 15.2.3.1 The Catecholaminergic Nuclei of the Midbrain 15.2.3.1.1 The Ventral Tegmental Area Nuclei (A10 Complex) 15.2.3.1.2 The Substantia Nigra Complex (A9 Complex) 15.2.3.1.3 The Retrorubral Nucleus (A8) 15.2.3.2 The Serotonergic Nuclei of the Midbrain 15.2.3.2.1 The Caudal Linear and Supralemniscal (B9) Nuclei 15.2.3.2.2 The Median Raphe Nucleus 15.2.3.2.3 The Dorsal Raphe Nuclear Complex 15.2.4 The Intrinsic Nuclei of the Midbrain 15.2.4.1 The Superior Colliculus 15.2.4.2 The Inferior Colliculus 15.2.4.3 The Red Nucleus 15.2.4.4 The Periaqueductal Gray Matter 15.2.5 The Reticular/Tegmental Nuclei of the Midbrain 15.3 Pons 15.3.1 The Cranial Nerve Nuclei of the Pons 15.3.1.1 The Trigeminal Nerve and Associated Nuclei 15.3.1.2 The Principal Trigeminal Nucleus 15.3.1.3 The Pontine Portion of the Trigeminal Mesencephalic Nucleus and Tract 15.3.1.4 The Trigeminal Motor Nucleus 15.3.1.5 The Abducens Nerve and Nucleus 15.3.1.6 The Facial Nerve and Facial Nuclear Complex 15.3.2 The Ascending and Descending Fiber Pathways of the Pons 15.3.3 The Neuromodulatory Nuclei of the Pons 15.3.3.1 The Cholinergic Nuclei of the Pons 15.3.3.2 The Catecholaminergic Nuclei of the Pons: The Locus Coeruleus Complex 15.3.3.3 The Serotonergic Nuclei of the Pons 15.3.4 The Intrinsic Nuclei of the Pons 15.3.4.1 The Periventricular Gray Matter 15.3.4.2 The Superior Olivary Complex and Trapezoid Body 15.3.4.3 The Ventral Pontine Nucleus 15.3.5 The Reticular/Tegmental Nuclei of the Pons 15.4 Medulla Oblongata 15.4.1 The Cranial Nerve Nuclei of the Medulla Oblongata 15.4.1.1 The Spinal Trigeminal Tract and Associated Nuclei 15.4.1.2 The Vestibulocochlear Nerve and Cochlear and Vestibular Nuclei 15.4.1.3 The Nucleus Ambiguus 15.4.1.4 The Preganglionic Motor Neurons of the Inferior Salivatory Nucleus (pIX) 15.4.1.5 The Dorsal Motor Vagal Nucleus (X) 15.4.1.6 The Hypoglossal Nucleus (XII) 15.4.2 The Ascending and Descending Fiber Pathways of the Medulla Oblongata 15.4.3 The Neuromodulatory Nuclei of the Medulla Oblongata 15.4.3.1 The Catecholaminergic Nuclei of the Medulla Oblongata 15.4.3.2 The Serotonergic Nuclei of the Medulla Oblongata 15.4.4 The Intrinsic Nuclei of the Medulla Oblongata 15.4.4.1 The Inferior Olivary Nuclear Complex 15.4.4.2 The Nuclei of Tractus Solitarius 15.4.4.3 The Dorsal Column Nuclei 15.4.5 The Reticular/Tegmental Nuclei of the Medulla Oblongata 15.5 Consistency and Variation in the Mammalian Brain stem References 16. Comparative Anatomy of Glial Cells in Mammals 16.1 Classification of Glial Cells 16.2 General Principles of Glial Cell Phenotype and Distribution 16.2.1 Evolution of the Neuronal Support by Glial Cells 16.2.2 Glial Cell Phenotype: Cell Processes 16.2.2.1 Apical Ventricle-Contacting Processes (Type I Processes) 16.2.2.2 Basal Endfoot-Bearing Pia- and Vessel-Contacting Processes (Type II Processes) 16.2.2.3 Lateral Neuron-Contacting Processes (Type III Processes) 16.2.2.3.1 Processes of Protoplasmic Astrocytes 16.2.2.3.2 Processes of Fibrous Astrocytes 16.2.2.3.3 Processes of Velate Astrocytes 16.2.3 Glial Cell Phenotype in Development 16.2.4 Glial Cells in Adult Neurogenesis 16.2.5 Functional Astrocytic Syncytia 16.2.6 Glioneuronal Domains of Information Processing 16.2.7 Analysis of Glial Cell Morphology 16.3 Macroglia of the Central Nervous System Including the Retina 16.3.1 Radial Glia of the Mature Central Nervous System 16.3.1.1 Tanycytes 16.3.1.2 Müller Cells 16.3.2 Astrocytes 16.3.3 Diacytes 16.3.4 Ependymoglia, Choroid Plexus Cells, and Retinal Pigment Epithelial Cells 16.3.5 Oligodendroglia 16.3.5.1 Oligodendroglia Development 16.3.5.2 Oligodendroglia in Axonal Injury 16.4 Microglia 16.4.1 Resting Microglia 16.4.2 Activated Microglia 16.5 Glia of the Peripheral Nervous System 16.5.1 Schwann Cells 16.5.2 Satellite Cells 16.5.3 Enteric Glia 16.5.4 Glia in Peripheral Sensory Epithelia References 17. The Monotreme Nervous System 17.1 Introduction 17.2 Evolution and Fossil Record of Monotremes 17.2.1 The First Monotreme 17.2.2 The Monotreme Fossil Record 17.2.3 Which Monotreme Body Form Is the Oldest? 17.3 What is Different About Monotremes From Other Mammals? 17.3.1 Reproduction 17.3.2 Body Temperature and Metabolism 17.3.3 Monotreme Cognition 17.4 Electroreception and Mechanoreception 17.4.1 Overview of the Trigeminal System 17.4.2 Peripheral Receptors 17.4.3 Trigeminal Ganglion and Sensory Nuclei 17.4.4 Thalamus and Cortex 17.4.5 Electroreception and Mechanoreception in the Natural Setting 17.5 The Olfactory System in Monotremes 17.5.1 Overview of Monotreme Olfactory System Structure 17.5.2 The Olfactory Receptor Gene Repertoire of Monotremes 17.6 The Cortex in Monotremes 17.6.1 Cortical Topography and Functional Areas 17.6.2 Thalamocortical Relationships 17.6.3 Is There a Monotreme Claustrum? 17.6.4 Cellular Composition and Neuronal Structure 17.7 Nervous System Development in Monotremes 17.7.1 Overview of Monotreme Development 17.7.2 Trigeminal System Development 17.7.3 Cortical Development 17.8 Conclusions. Not Primitive, Just Different! 17.8.1 Monotremes, Like All Other Mammals, Present a Mosaic of Primitive and Derived Features 17.8.2 What Can Monotremes Tell Us About Mammalian Brain Evolution? Acknowledgment References 18. Evolution of Flight and Echolocation in Bats 18.1 Introduction 18.2 Evolution of Bat Flight 18.3 Evolution of Bat Echolocation Acknowledgments References 19. Carnivoran Brains: Effects of Sociality on Inter- and Intraspecific Comparisons of Regional Brain Volumes 19.1 Introduction 19.2 Factors Related to Brain Size Variation 19.2.1 Principle of Proper Mass 19.2.2 Social Brain Hypothesis 19.2.3 Comparative Studies in Carnivorans 19.3 The Virtual Endocast 19.3.1 Computed Tomography Analysis 19.3.2 Regional Brain Volumes 19.4 Interspecies Comparisons 19.4.1 Family Hyaenidae 19.4.2 Family Procyonidae 19.5 Intraspecies Comparisons 19.5.1 Family Hyaenidae: Sex Differences in the Spotted Hyena 19.5.2 Family Procyonidae: Sex Differences in the Coatimundi 19.5.3 Family Felidae: Sex Differences in Lion and Cougar 19.6 Limitations 19.7 Summary and Conclusions Acknowledgment References Relevant Website 20. The Phylogeny of Primates 20.1 Introduction 20.2 Primate Origins 20.3 Order Primates 20.4 Semiorder Strepsirrhini 20.5 Semiorder Haplorhini 20.5.1 Anthropoids 20.5.2 Platyrrhines (Infraorder Platyrrhini) 20.5.3 Pitheciids 20.5.4 Cebids 20.5.5 Atelids 20.5.6 Catarrhines (Infraorder Catarrhini) 20.5.7 Old World Monkeys (Cercopithecoidea) 20.5.8 Hominoids 20.6 Broad-Scale Trends in Primate Brain and Sensory Evolution References 21. The Expansion of the Cortical Sheet in Primates 21.1 Cortical Sheet Formation During Development 21.2 Cortical Sheet Expansion Is Possible in Two Dimensions 21.3 Emergence of Transit Amplifying Cells in Vertebrate Evolution 21.4 Emergence of a Further Progenitor Subtype in Mammalian Evolution 21.5 Principles Underlying the Increase in Progenitor Cell Types and Numbers 21.6 Insights Into the Possible Adaptive Benefit of Cortical Expansion in Evolution References 22. Scaling Up the Simian Primate Cortex: A Conserved Pattern of Expansion Across Brain Sizes 22.1 Variations in Brain Size Among Simian Primates 22.2 Mosaic Versus Concerted Evolution 22.3 Measuring Expansion by Measuring the Size of Areas 22.4 Measuring Expansion by Surface Registration 22.5 The Spatial Pattern of Expansion in the Simian Cerebral Cortex 22.6 The Late Equals Large Principle 22.7 Characteristics of the Expanded Regions 22.8 The Reorganization of the Cortex in Primate Evolution 22.9 Implications of Primate Cortical Expansion 22.10 Summary References 23. Evolution of Visual Cortex in Primates 23.1 Introduction 23.2 The Primate Radiation and Other Members of Euarchontoglires 23.3 The Eye, Retina, and Retinal Projections 23.4 Primary Visual Cortex V1 or Area 17 23.5 The Second Visual Area, V2, and Prostriata 23.6 The Third Visual Area, V3 23.7 The Dorsomedial Visual Area, DM 23.8 Area DL or V4 23.9 The MT Complex (MT, MTc, MST, FSTd, and FSTv) 23.10 Epilogue References 24. The Evolution of Subcortical Pathways to the Extrastriate Cortex 24.1 Introduction 24.2 Subcortical Structures Associated With Extrastriate Pathways 24.2.1 Thalamus 24.2.1.1 Lateral Geniculate Nucleus 24.2.1.2 Pulvinar Complex 24.2.2 Superior Colliculus 24.3 Extrastriate Cortex 24.4 Extrageniculostriate Pathways 24.4.1 Disynaptic Projection From Retina to Extrastriate Cortex via the Lateral Geniculate Nucleus 24.4.1.1 Diversity of K Cells Across Primates 24.4.1.2 Retinal Input to Koniocellular/Interlaminar Layers of Lateral Geniculate Nucleus 24.4.1.3 Superior Colliculus Input to the Lateral Geniculate Nucleus 24.4.2 Direct Retinal Projections to the Pulvinar With Efferent Targets in Extrastriate Visual Cortex 24.4.3 The Extrageniculate Pathway Through the Superior Colliculus and Pulvinar 24.4.3.1 Superior Colliculus Projections to the Pulvinar 24.4.3.1.1 Superior Collicular Terminals within the Pulvinar 24.4.3.1.2 Origins of Superior Collicular Projections 24.4.3.2 Pulvinar Connections With Extrastriate Cortex 24.5 Role of Extrageniculostriate Pathways Following Ablation of V1 24.6 Summary 24.7 Future Perspectives References 25. Evolved Mechanisms of High-Level Visual Perception in Primates 25.1 Introduction 25.2 Natural Vision 25.2.1 What Is the Problem? 25.2.2 Toward a Conceptual Hierarchy for Natural Vision 25.3 The Ancestry of Primate Visual Abilities 25.3.1 Mammalian Visual Behaviors 25.3.1.1 “High-Level” Vision in Nonprimate Mammals 25.3.1.2 A Shared Understanding of the Body 25.3.1.3 The Role of Early Visual Experience 25.3.2 Cortical Visual Specializations in the Mammalian Brain 25.3.2.1 Principles of Cortical Visual Specialization 25.3.2.2 Examples of High-Level Visual Specialization in the Mammalian Brain 25.3.3 Summary 25.4 Clade-Specific Visual Specializations in Primates 25.4.1 Adaptations for Social Vision 25.4.1.1 How Primates Look at Faces 25.4.1.2 Neural Specializations 25.4.1.2.1 The fMRI Layout of Social Processing Systems in the Primate Brain 25.4.1.2.2 Understanding the Activity of Macaque “Face Cells” 25.4.1.2.3 Mechanisms of Action Perception and Their Importance 25.4.2 Adaptations for Visually Guided Actions 25.4.2.1 How Primates Steer Their Hands 25.4.2.2 Neural Specializations 25.4.3 Summary 25.5 Conclusions Acknowledgments References 26. Evolution of Parietal Cortex in Mammals: From Manipulation to Tool Use 26.1 Introduction 26.2 The Use of Long-Train Intracortical Microstimulation to Define Movement Representations in Motor Cortex and Posterior Parie ... 26.3 Where and What Is Posterior Parietal Cortex in Nonprimate Mammals? 26.3.1 Rodents 26.3.2 Carnivores 26.3.3 Tree Shrews 26.3.4 Marsupials and Monotremes 26.3.5 Conclusion 26.4 Primates 26.4.1 Brodmann Area 5: Early Studies 26.4.1.1 Brodmann Area 5: Contemporary Studies 26.4.2 Brodmann Area 7: Early Studies 26.4.2.1 Brodmann Area 7: Contemporary Studies 26.4.3 Somatosensory Input to the Posterior Parietal Cortex in Primates 26.5 Posterior Parietal Cortex and Tool Use 26.6 Posterior Parietal Cortex in Humans 26.7 Conclusion References 27. Evolution of Parietal-Frontal Networks in Primates 27.1 Introduction 27.2 Parietal-Frontal Networks in Other Primates 27.3 The Functions of PPC Domains and Parallel Parietal-Frontal Networks 27.4 The Antecedents of Parietal-Frontal Domains and Networks in the Ancestors of Primates References 28. The Evolution of the Prefrontal Cortex in Early Primates and Anthropoids 28.1 Introduction 28.1.1 Lunar Primates 28.1.2 Steps and Leaps 28.1.3 Terms 28.1.4 Advances 28.2 Primate Adaptations 28.2.1 Early Primates 28.2.2 Anthropoids 28.3 New Prefrontal Areas 28.3.1 Early Primates 28.3.1.1 Granular Prefrontal Cortex 28.3.1.2 Terminology 28.3.1.3 Diversity Denial: General Considerations 28.3.1.4 Diversity Denial: Specific Issues 28.3.1.4.1 Thalamic Inputs 28.3.1.4.2 Dopaminergic Inputs 28.3.1.4.3 Spatial Memory Impairments 28.3.1.4.4 Granular Prefrontal Areas in Nonprimates 28.3.1.5 Supportive Evidence 28.3.1.5.1 Topology 28.3.1.5.2 Autonomic Outputs 28.3.1.5.3 Corticostriatal Projections 28.3.1.5.4 Sensory Inputs 28.3.1.6 Summary 28.3.2 Anthropoids 28.4 Other Neocortical Areas 28.4.1 Early Primates 28.4.2 Anthropoids 28.5 Size and Shape 28.5.1 Brain Enlargement in Stem Euprimates 28.5.2 Brain Enlargement in Anthropoids 28.5.3 Social Factors 28.5.4 Summary 28.6 Cortical Functions and Specializations 28.6.1 Early Primates 28.6.1.1 Parietal–Premotor Networks 28.6.1.2 Granular Orbitofrontal Cortex 28.6.1.3 Caudal Prefrontal Cortex 28.6.1.4 Temporal Cortex 28.6.1.5 Summary 28.6.2 Anthropoids 28.6.2.1 Brain Changes and Foraging 28.6.2.2 Using Events to Reduce Foraging Errors 28.6.2.2.1 Credit Assignment 28.6.2.2.2 Discrimination and Reversal Learning Set 28.6.2.2.3 Object-in-Place Scenes Task 28.6.2.2.4 Conditional Motor Learning 28.6.2.2.5 Temporally Extended Events 28.6.2.2.6 Rules and Strategies 28.6.2.2.7 Summary 28.6.2.3 Working Memory and Behavioral Inhibition 28.6.2.3.1 Against Working-Memory Theory 28.6.2.3.2 Against Behavioral Inhibition Theory 28.7 Summary 28.7.1 Early Primates 28.7.2 Anthropoids 28.7.3 From Trees to Tranquility References 29. An Introduction to Human Brain Evolutionary Studies 29.1 Introduction 29.2 Evolutionary Background 29.2.1 From the Phylogenetic Scale to the Tree of Life 29.2.2 Primate and Human Evolution 29.3 Human Brain Evolution: Classical Views 29.3.1 Brain Size 29.3.2 Brain Organization 29.3.3 The State of the Art Prior to the Current Era 29.4 Developments in Modern Neuroscience 29.4.1 The Neuroanatomical Revolution of the 1970s 29.4.2 The Neuroimaging Revolution 29.4.3 Parcellation 29.4.4 Homology and Comparative Analysis 29.5 Conclusions and Challenges 29.5.1 Some Lessons Learned 29.5.2 Opportunities and Challenges for the Future References 30. Human Evolutionary History 30.1 Introduction 30.2 Comparative Context 30.3 Fossil Evidence 30.4 Hominin Taxonomy 30.5 The Case for Grades Within the Hominin Clade 30.6 Criteria for Including Taxa Within the Hominin Clade 30.6.1 Archaic Hominins 30.6.2 Megadont and Hypermegadont Archaic Hominins 30.6.3 Transitional Hominins 30.6.4 Premodern Homo 30.6.5 Anatomically Modern Homo 30.7 Different Taxonomic Interpretations 30.8 Tempo and Mode 30.9 Temporal Trends in Hominin Brain Size 30.10 Challenges to Conventional Wisdom Appendix 1 References 31. Evolution of Human Life History 31.1 Introduction 31.1.1 Some Definitions 31.2 Human Life History Stages 31.3 The Primate Roots of Human Life History 31.4 Unique and Unusual Features of Humans Life History 31.5 Reproductive Strategies 31.6 The Evolution of Hominin Communal Breeding 31.6.1 From Cooperative/Communal Breeding to Human Biocultural Reproduction 31.7 Early Weaning and the Childhood Stage of Life History 31.8 Cognitive Capacities for Nongenetically Based Marriage and Kinship 31.9 Decreased Lifetime Reproductive Effort 31.10 When Did Modern Human Life History Evolve? 31.11 What We Know and What We Need to Know 31.12 Conclusion References 32. The Fossil Evidence of Human Brain Evolution 32.1 Human Paleoneurology 32.1.1 Brains and Fossils 32.1.2 Brains and Endocasts 32.1.3 Reading Endocasts 32.1.4 Computing Paleoneurology 32.1.5 Statistics and the Fossil Record 32.2 Functional Craniology 32.2.1 Morphogenesis 32.2.2 Brain and Braincase 32.3 Brain Size 32.3.1 Brain Size and Human Fossils 32.3.2 Absolute and Relative Brain Size 32.4 Brain Morphology 32.4.1 Sulcal Pattern and Brain Proportions 32.4.2 Frontal Lobes 32.4.3 Parietal Lobes 32.4.4 Temporal Lobes 32.4.5 Occipital Lobes 32.4.6 Cerebellar Lobes 32.4.7 The Paleoneurological Variation of the Human Genus 32.5 Craniovascular Traits and Brain Thermoregulation 32.5.1 Brain Morphology and Vascular Biology 32.5.2 Middle Meningeal Artery 32.5.3 Venous Sinuses 32.5.4 Diploic Vessels and Emissary Foramina 32.5.5 Endocranial Thermal Maps 32.6 Cognition, Fossils, and Future Steps 32.6.1 Cognitive Archaeology and Neuroarchaeology 32.6.2 Future Steps in Paleoneurology Acknowledgments References 33. Remarkable, But Not Special: What Human Brains Are Made of 33.1 The Former View: The Human Brain Is Special 33.2 The Human Brain as a Scaled-Up Primate Brain 33.3 The Energetic Cost of the Human Brain 33.4 The Expanded Human Cerebral Cortex Does Not Have Relatively More Neurons 33.5 The Expanded Human Cerebral Cortex Does Not Have Relatively More Neurons in the Prefrontal Region 33.6 Biological Capabilities × Developed Abilities References 34. The Timing of Brain Maturation, Early Experience, and the Human Social Niche 34.1 Introduction 34.1.1 “Allometrically Expected” 34.1.2 Human Exceptionalism 34.1.3 Life History 34.2 Comparative Approaches to Translating Time 34.2.1 Brief Review of Translating Time Methodology 34.2.2 Crossing Gradients in the Cortex and Their Phylogenetic Significance 34.2.3 The Case of the Synaptic Surge 34.2.4 Early and Late Processes in Myelination 34.2.5 What Are “Critical Periods” in Morphological Terms? 34.2.5.1 Initial Parameter Setting: One-To-One Connections, Topographic Maps, and Brain–Body Alignment 34.2.5.2 Genes, Species-Typical Behaviors, and Cortical Areas 34.2.5.3 Gradients of Activation, Activity, or Cessation of Activity 34.2.5.4 Summary: Deploy With Military Precision, Then (Eagerly) Sit and Wait 34.3 Life History 34.3.1 Construction of Individual Brains Versus Life History Transactions 34.3.2 Human Birth in Its Primate and Mammalian Contexts 34.3.3 Human Weaning in Its Primate and Mammalian Contexts 34.3.4 The Serial Litter and the Social World References Relevant Websites 35. Human Association Cortex: Expanded, Untethered, Neotenous, and Plastic 35.1 Association Cortex Is Disproportionately Expanded in Great Apes and Particularly Humans 35.2 Long-Range Projections Connect Distributed Regions of Association Cortex Together 35.3 Theories of Areal Patterning 35.4 The Tethering Hypothesis: Making Sense of the Gaps 35.5 Determinants of Cortical Expansion and Patterning 35.6 Activity-Dependent Sculpting Shapes Cortical Territories 35.7 Intrinsic Developmental Factors Shape Cortical Territories and Their Connectivity 35.8 Conserved and Divergent Properties of Neocortical Gene Expression Between Rodents and Primates 35.9 Gene Expression Topography Links to Human Association Networks 35.10 Spatial Gradients and Sharp Boundaries 35.11 Conclusions References 36. On the Evolution of the Frontal Eye Field: Comparisons of Monkeys, Apes, and Humans 36.1 Overview 36.2 Gaze Control and Coordination in Prosimians, Monkeys, Apes, and Humans 36.3 Variability of Sulci in the Primate Frontal Cortex 36.4 Location of FEF Across Primate Species 36.4.1 Scandentia 36.4.2 Strepsirrhini: Prosimians 36.4.2.1 Lorisoidea (Galago) 36.4.3 Haplorrhini: Simians 36.4.3.1 Platyrrhini (New World Monkey) 36.4.3.1.1 Callitricidae (Marmoset) 36.4.3.1.2 Aotidae (Owl Monkey) 36.4.3.1.3 Saimiriinae (Squirrel Monkey) 36.4.3.1.4 Cebidae (Capuchin) 36.4.4 Cercopithecidae (Old World Monkey) 36.4.4.1 Macaca (Macaque) 36.4.4.2 Papio (Baboons) 36.4.5 Hominoidea 36.4.5.1 Pongo (Orangutan), Gorilla (Gorilla), and Pan (Chimpanzee and Bonobo) 36.4.5.2 Human 36.5 Is FEF Located Differently Across Species? 36.5.1 Comparative Neuroimaging 36.5.2 Comparative Architecture 36.5.3 Comparative Sulcal Patterns 36.6 Conclusion Acknowledgments References 37. The Evolution of Auditory Cortex in Humans 37.1 Auditory Cortex: Core, Belt, and Parabelt 37.1.1 Macaque 37.1.2 Human 37.2 Functional Topography of Auditory Cortex 37.2.1 Hierarchical Processing of Complex Sounds 37.2.2 Involvement of the Auditory Dorsal Stream in the Processing of Sound Sequences 37.2.3 Brain Connectivity in Monkeys and Humans Acknowledgments References 38. Language Evolution 38.1 An Evolving Landscape 38.2 Deep Homology 38.3 Primate Ancestry 38.4 Tinkering With Our Inheritance 38.5 Updating the Neurobiological Model for Human Language 38.6 Conclusion Acknowledgments References Further reading 39. The Search for Human Cognitive Specializations 39.1 Introduction 39.2 A Search Strategy for Human Cognitive Specializations 39.3 A Partial List of Uniquely Human Cognitive Abilities 39.4 Case Study: Language 39.5 Case Study: Mindreading 39.6 Case Study: Culture 39.7 Conclusion: Narrowing the Search References Index A B C D E F G H I J K L M N O P R S T U V W X Y Z