ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Evolution of Nervous Systems A Comprehensive Reference

دانلود کتاب تکامل سیستم های عصبی یک مرجع جامع

Evolution of Nervous Systems A Comprehensive Reference

مشخصات کتاب

Evolution of Nervous Systems A Comprehensive Reference

دسته بندی: پزشکی
ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 0123925606, 9780123925602 
ناشر: Academic Press 
سال نشر: 2006 
تعداد صفحات: 2024 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 78 مگابایت 

قیمت کتاب (تومان) : 50,000



کلمات کلیدی مربوط به کتاب تکامل سیستم های عصبی یک مرجع جامع: رشته های پزشکی، فیزیولوژی انسان، فیزیولوژی عصبی انسان



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 17


در صورت تبدیل فایل کتاب Evolution of Nervous Systems A Comprehensive Reference به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تکامل سیستم های عصبی یک مرجع جامع نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

0.00 Evolution of Nervous Systems - A Comprehensive Reference......Page 1
Common Plan versus Diversity......Page 2
Scala Naturae versus Phylogenetic Bush......Page 4
Relative Size versus Absolute Size......Page 5
Natural Selection versus Developmental Constraints......Page 8
One Law, Many Laws, or None......Page 10
Conclusions and Prospects......Page 11
References......Page 13
Further Reading......Page 16
Introduction to Metazoan Phylogeny......Page 17
Molecules......Page 18
Methods......Page 20
Nonbilaterians and Acoelomorpha......Page 21
Ecdysozoa......Page 23
Nonbilaterians: Porifera, Placozoa, Ctenophora, Cnidaria, and Myxozoa......Page 24
Echinodermata, Hemichordata, and Xenoturbella......Page 27
Chordata: Urochordata and Cephalochordata......Page 29
Craniata and Vertebrata......Page 30
Ecdysozoa......Page 31
Panarthropoda: Arthropoda, Onychophora, and Tardigrada......Page 32
Nematoida: Nematoda and Nematomorpha......Page 33
Eutrochozoa: Nemertea, Mollusca, Sipuncula, Annelida, Echiura, Siboglinidae, and Myzostomida......Page 34
Platyzoa: Platyhelminthes, Gnathostomulida, Rotifera, Acanthocephala, Entoprocta, Cycliophora, and Micrognathozoa......Page 36
Conclusion and Future Progress......Page 37
References......Page 38
Further Reading......Page 40
Glossary......Page 41
Introduction to Character State Reconstruction and Evolution......Page 42
Character State Polarity......Page 43
Adaptation......Page 44
Phylogenetic Trees......Page 45
Maximum Likelihood and Bayesian Optimization......Page 47
Which Optimization Approach to Use?......Page 48
Correlative Comparative Methods......Page 49
Limitations of Methods......Page 50
Conclusions......Page 51
References......Page 52
Relevant Websites......Page 53
Glossary......Page 54
Introduction......Page 55
A Common Bauplan for Animal Development?......Page 56
From Unity of Composition to Unity of Nervous Systems?......Page 57
Hox Genes Are Involved in the Regional Specification of Neuronal Identity......Page 58
Cephalic Gap Genes in Regionalization of the Anterior Brain: The otd/Otx Genes......Page 60
Antagonistic Activity of Dpp/BMP-4 and sog/Chordin......Page 61
vnd/Nkx, ind/Gsh, and msh/Msx: Specification of Longitudinal Columns......Page 62
The CNS Midline: Pattern Formation and Axonal Guidance......Page 63
Molecular Phylogeny: Several Possibilities......Page 64
A Simple Nerve Net at the Base of Nervous System Evolution?......Page 65
References......Page 68
Further Reading......Page 71
Glossary......Page 72
Introduction......Page 73
Internal Constraints in Development and Evolution. Epigenetic Constraints......Page 74
The Principle of Modularity: Genetic Cascades, Cells, Cell Fields, and Organs......Page 75
Morphogenetic Fields as Evolutionary and Developmental Higher-Order Modules Linking Genotype and Phenotype......Page 76
Field Homology: A Useful Concept in Studies of Brain Evolution......Page 79
In Search of the Brain Archetype in Vertebrates: Developmental Regulatory Genes as Useful Tools for Deciphering the Archetype and Identifying Homologous Fields......Page 80
Evolution of Homologous Fields in the Brain: The Case of the Pallium......Page 81
Evolution of New Fields in the Vertebrate Brain: Analysis of the Lamprey......Page 82
References......Page 83
Further Reading......Page 86
Reelin Signaling During Cortical Development and Evolution......Page 87
The Puzzle of Cajal-Retzius Cells......Page 91
Redundant Expression of Reelin in Mice: What Could It Teach Us about Evolution?......Page 92
References......Page 93
Further Reading......Page 95
Glossary......Page 96
Why Evolutionary Neuroethology?......Page 97
The Basic Plan of the Decapod Central Nervous System......Page 98
The New and Ancestral Modes of Swimming......Page 99
Digging Preceded Uropod Beating: The Mosaic Ancestry of Sand Crab Digging Behaviors......Page 100
Neurobehavioral Mechanisms and Biomechanics are Inseparable......Page 101
Hinged versus Single-Pivot Joints......Page 102
Neuromuscular Repercussions of Increasing a Joint’s Freedom of Movement......Page 104
Altered (and conserved) functions of conserved neuromusculature......Page 105
Intermediates between Sand Crab and Crayfish Tailfans......Page 106
TUSRs evolved twice......Page 107
The extraordinary nonspiking TUSR of hippid sand crabs......Page 108
Coordinate fourth legs and tail?......Page 110
Testable hypotheses from comparative studies......Page 111
Understanding the present by reconstructing the past......Page 113
References......Page 114
Further Reading......Page 116
Glossary......Page 117
Introduction......Page 118
Variation Between Classes......Page 119
Variation Within Classes......Page 120
Relative Brain Size......Page 121
Costs......Page 123
Benefits......Page 124
Ecology and Lifestyles......Page 125
Mammals......Page 126
Birds......Page 128
Insects......Page 131
Conclusion......Page 132
References......Page 133
Further Reading......Page 137
Glossary......Page 138
Introduction......Page 139
Stars and Stripes in the Cortex......Page 140
Cortical Magnification in Star-Nosed Moles......Page 142
Conclusions......Page 144
References......Page 145
Further Reading......Page 146
Introduction......Page 147
Developmental Mechanisms can Accommodate New Neurons and Trigger Matching Changes in Connected Populations......Page 148
Role of ephrins in retinotectal map formation......Page 149
Role of lateral inhibition in conservation of response properties......Page 150
Role of Sensory Deprivation in Specificity of Thalamocortical Pathways......Page 151
The cross-modal plasticity paradigm......Page 152
Anatomical basis for visual responses and topography in cross-modal A1......Page 153
Molecular specification of cortical areas through axon guidance......Page 154
References......Page 157
Further Reading......Page 160
Relevant Websites......Page 161
Introduction......Page 162
Polarization of Migrating Neurons......Page 163
Nucleokinesis......Page 165
Two Primary Modes of Migration in the Developing CNS......Page 166
Evolutionary Advantages of Different Modes of Migration......Page 168
Mechanisms of Radial Migration......Page 169
Migration of Cortical Interneurons......Page 171
Migration of Facial Branchiomotor Neurons......Page 173
Migration in the Postnatal Brain......Page 174
References......Page 175
Relevant Websites......Page 179
Introduction......Page 180
Structure and organization of the growth cone......Page 181
Growth cones change their morphologies in response to the environment......Page 182
Axon-Pathfinding Concepts......Page 183
Identification of Guidance Molecules......Page 184
Netrin-1s and their receptors......Page 186
Ephrins and Eph receptors......Page 188
General organization of the retinal pathway......Page 189
Pathfinding across and out of the retina......Page 190
Axon divergence at the chiasm......Page 191
Pathfinding in the optic tract......Page 192
The vertebrate spinal cord......Page 193
Local Translational Control......Page 195
Receptor Interaction......Page 197
Axon Guidance and Evolution......Page 198
References......Page 199
Further Reading......Page 202
Glossary......Page 203
What Are Action Potentials?......Page 204
AP Waveform Properties......Page 205
Molecular Determinants of APs......Page 206
During Synapse Formation and Early Circuit Activity......Page 207
Developmental Regulation of the AP......Page 208
General Principles......Page 209
Distribution of Ion Channels during Developmental Myelination......Page 210
Transcriptional Regulation......Page 211
Alternative splicing......Page 218
Surface membrane insertion......Page 220
Glycosylation......Page 221
References......Page 222
Further Reading......Page 230
Glossary......Page 231
Ectodermal Derivatives......Page 232
Conserved Pathways and Evolutionary Transitions in Ectodermal Development......Page 234
Bmp signaling and DV inversion......Page 235
Hox genes and AP......Page 236
Modularity in Ectodermal Evolution......Page 237
Heterochrony......Page 238
Gene Duplication and Divergence in Ectodermal Patterning......Page 239
Neural Crest and Vertebrate Origins......Page 240
Neural Crest and the Origins of Jaws and Middle-Ear Bones......Page 241
Morphology - Neural Crest and Neural Tube Morphogenesis......Page 243
Summary and Outlook......Page 244
References......Page 245
Further Reading......Page 249
Introduction......Page 250
Methodological Issues......Page 251
Exuberance and Selection versus Connectional Specificity......Page 252
Multiple Factors Regulate the Maintenance/Elimination of Exuberant Connections......Page 253
More Developmental Plasticity in Cortical Areas Which Evolved More?......Page 255
References......Page 256
Further Reading......Page 258
Neuron Arbor Optimization......Page 259
Component Placement Optimization......Page 260
Further Reading......Page 262
Glossary......Page 263
The Interpretation of Scaling Laws......Page 264
Detail......Page 266
When Form Follows Function......Page 267
Changing the Number of Dimensions from One Map to the Next......Page 268
Internal Consistency......Page 270
Grade Shifts......Page 271
Further Reading......Page 272
Glossary......Page 273
Further Reading......Page 277
Glossary......Page 278
Definition of the Nervous System......Page 280
Basal Metazoan Phylogeny......Page 281
Proposals for the Evolution of the First Nervous System......Page 282
Introduction......Page 285
Non-Nervous Conduction Outside of the Animal Kingdom......Page 286
Porifera: Specialized Cells and Electrical Conduction......Page 287
Cnidarian Nervous Systems: Multiple Levels of Organization......Page 289
Cnidarian Nervous Systems: Ion Channels and Neuroactive Substances......Page 292
Placozoa versus Cnidaria......Page 293
Genetic Control of Neurogenesis in Cnidaria and Bilateria......Page 294
Genetic Control of Anteroposterior Patterning in Cnidaria and Bilateria......Page 295
Genetic Control of Dorsoventral Specification in Cnidaria and Bilateria......Page 296
Genes Involved in Eye Development in Cnidaria and Bilateria......Page 298
References......Page 299
Further Reading......Page 303
Introduction......Page 305
Onychophora......Page 306
Myriapoda......Page 307
Neurogenesis......Page 308
Brain......Page 309
Ventral nerve cord......Page 310
Ventral Organ Formation......Page 311
Thickening of the neuroectoderm......Page 312
Nuclear migration and origin of neural stem cells......Page 313
Ganglion formation......Page 315
Formation of Central Axon Tracts......Page 316
Mechanisms for Neurogenesis......Page 318
Evidence from onychophoran neurogenesis......Page 319
Mode of Formation of Central Axon Pathways......Page 320
Axon growth in myriapod embryos......Page 321
References......Page 322
Further Reading......Page 324
Introduction......Page 325
Identification of Homologous Head (and Brain) Regions in Different Arthropods by the Expression of Hox Genes and orthodenticle......Page 326
Insects......Page 328
The Labrum - Insights into an Endless Dispute......Page 329
A Neuromeric Model of the Brain in Drosophila......Page 331
Antennal Lobes......Page 333
References......Page 334
Further Reading......Page 336
Glossary......Page 337
Commissural Organization and the Segmental Body Plan......Page 338
The Postoral Brain......Page 340
The Split Deutocerebrum: Evidence from Identified Neurons of the Adult Brain......Page 344
References......Page 346
Further Reading......Page 347
Color Vision: Definition and Properties......Page 348
General Principles......Page 349
Arthropods......Page 350
Visual Pigment Tuning: Sensitivity and Contrast Hypotheses......Page 351
Further Reading......Page 352
Introduction......Page 354
The Behaviors......Page 355
Comparing the Melibe and Tritonia Swim CPGs......Page 356
A Common Nervous System......Page 357
Parallel Evolution......Page 358
References......Page 359
Further Reading......Page 360
Relevant Websites......Page 361
Introduction......Page 362
Neuron Structure and Physiology - Identified Neurons......Page 364
Voltage-Gated Ion Channels......Page 365
Muscle and Neuromuscular Factors......Page 366
Generation of Functional Patterns by Defined Circuits......Page 368
Crustacean Cardiac Ganglion......Page 369
Modulation of heart rhythmicity......Page 372
Leech Heart......Page 373
Snail Feeding CPG......Page 375
The Crustacean Stomatogastric System......Page 377
The stomatogastric CPGs......Page 378
Inputs from higher centers......Page 379
The canonical STG circuit......Page 380
Chemical modulation......Page 381
Evolution of the stomatogastric system......Page 382
References......Page 386
Relevant Website......Page 389
Glossary......Page 390
Introduction......Page 391
Selection of Habitat, Feeding, and Foraging......Page 392
Elemental Forms of Associative Learning......Page 394
Invertebrate Classical Conditioning......Page 395
Invertebrate Operant Conditioning......Page 397
Invertebrate Composite Operant Conditioning......Page 399
Nonelemental Forms of Associative Learning......Page 400
Selective Attention......Page 403
Rule Learning......Page 404
Conditional Discriminations: Occasion Setting and Contextual Learning......Page 405
Memory Systems......Page 407
Physiological Correlates of Memory Systems......Page 408
Working Memory: Capacity and Duration......Page 409
Reconsolidation......Page 410
Representation and Planning, Observatory Learning; Navigation; Communication and Individual Recognition......Page 411
Observatory Learning......Page 412
Navigation......Page 413
The map concept and its experimental support......Page 415
The cognitive dimensions of dance communication in honeybees......Page 416
Individual Recognition......Page 418
Collective Cognition......Page 419
Conclusion......Page 420
References......Page 421
Further Reading......Page 429
A Short History: Nature versus Nurture......Page 430
Characterization......Page 431
Genes and Mating Behavior......Page 432
Characterization of the System......Page 433
Neurohormones and Aggression......Page 434
Summary......Page 435
References......Page 436
Further Reading......Page 437
Why Identifying Sleep in Invertebrates is Important......Page 438
Posture......Page 439
Micro-Behaviors During Sleep in the Honeybee......Page 440
Electrophysiology of Sleep in Invertebrates......Page 441
Conclusions......Page 442
Further Reading......Page 443
Introduction......Page 444
Expression of Genes for Ca2+-Signaling Pathway Proteins in the MBs of the Honeybee Brain......Page 446
Ecdysteroid Regulated Genes (Mbk1-1/AmE93 and AmE74) in the MBs......Page 448
Gene Expression of Preprotachykinin Gene in the Honeybee Brain and Other Insects......Page 452
References......Page 454
Further Reading......Page 456
Glossary......Page 457
Introduction......Page 458
Principles of Comparative Neuroanatomy......Page 459
Craniates (cyclostomes and gnathostomes)......Page 461
Cephalochordates......Page 463
Echinoderms......Page 464
Large neurons......Page 465
Sensory afferents......Page 466
Immunocytochemically identified neuron populations......Page 467
Catecholaminergic neurons......Page 468
Making and Placing Neurons: The Evolution of Cell Fate and Regional Patterning......Page 469
Eyes......Page 474
Summary and Conclusion......Page 475
Acknowledgments......Page 476
References......Page 477
Further Reading......Page 480
Introduction......Page 481
Deuterostome Phylogeny and Hemichordate Biology......Page 482
Morphological Characteristics of the Hemichordate Nervous System......Page 483
Proposed Morphological Homology between Vertebrate Central Nervous System and Hemichordate Nervous System......Page 486
Molecular Patterning Events in the Anteroposterior Patterning of the Hemichordate Nervous System......Page 487
Evolutionary Interpretations of the Molecular Data from Hemichordates......Page 489
Life History Considerations......Page 490
Future Directions......Page 491
References......Page 492
Further Reading......Page 494
Introduction: Scala Naturae Concept is Hard to Kill......Page 495
Diversity and Bauplan of Fish Brains from Agnathans to Lungfishes......Page 496
Bauplan: The Shared Ancestral Brain Morphotype......Page 500
Extension of Bauplan: Phylotypic Stage in Brain Development......Page 501
Brain Weight-Body Weight Data......Page 503
How the World and Brain Interconnect: The Peripheral Nervous System......Page 504
Actinopterygians......Page 505
Chondrichthyans......Page 507
Integrative and Motor Systems......Page 508
Actinopterygians......Page 509
Agnathans......Page 513
References......Page 514
Further Reading......Page 516
Glossary......Page 517
Gross morphology......Page 520
Primary afferents......Page 521
Motor neurons......Page 522
Motor nuclei......Page 523
Ascending pathways of the medulla oblongata......Page 524
Isthmic region and tegmentum......Page 525
Retina......Page 526
Organization of retinal projections......Page 528
Projection specificity of retinal ganglion cells and morphology of terminal arbors......Page 530
Cytoarchitecture of the tectum mesencephali......Page 531
Morphology and location of neuron types in the tectum......Page 532
Nonretinal afferents......Page 535
Descending pathways......Page 537
Ascending pathways......Page 539
Tectum mesencephali......Page 540
Response properties of RGCs......Page 541
Neurons......Page 542
Pretectum......Page 544
Dorsal and ventral thalamus......Page 545
Response properties of thalamic neurons......Page 548
Hypothalamus......Page 549
Medial pallium......Page 552
Dorsal pallium......Page 554
Lateral and ventral pallium......Page 555
Summary......Page 556
Striatopallidal complex......Page 557
Ventral striatopallidal complex: nucleus accumbens/ventral striatum and ventral pallidum......Page 559
Amygdaloid complex......Page 560
The Nervous System of Amphibians: Primitive or Simplified?......Page 561
The thalamopallial system......Page 565
Pallium......Page 567
The visual system......Page 568
Amygdaloid complex......Page 569
Summary and Conclusions......Page 570
References......Page 571
Further Reading......Page 579
Relevant Websites......Page 580
Introduction......Page 581
How Do Differences in Brain Organization Evolve?......Page 582
Gene Expression......Page 583
Reptiles......Page 584
Reptile to bird transition......Page 585
Summary......Page 586
Reptiles......Page 587
Amphibian to reptile transition......Page 588
Reptile to mammal transition......Page 589
Amphibian to reptile transition......Page 590
Olfactory System......Page 592
Reptiles......Page 593
Hindbrain: Cranial Motor Nuclei......Page 594
Abducens nuclei (VI)......Page 595
Dorsal Thalamus......Page 596
Reptiles......Page 597
Reptile to bird transition......Page 598
Summary......Page 599
Reptiles......Page 600
Reptile to mammal transition......Page 602
Homologues of the DVR and pallial thickening......Page 603
References......Page 605
Further Reading......Page 612
Crocodilian Phylogeny......Page 613
Anatomy......Page 614
Mating......Page 615
Physiology......Page 616
Comparisons with Other Reptilians......Page 617
Further Reading......Page 618
Glossary......Page 619
Introduction......Page 620
Finding the Homologue of Neocortex in the Pallium of Nonmammals......Page 621
Pallial subdivisions in mammals and neocortical origin......Page 623
Pallial subdivisions in nonmammals: the dorsal pallium in birds and reptiles......Page 625
Morphological landmarks and molecular markers: problematic delimitation of the dorsal pallium in birds and reptiles......Page 626
Connections......Page 627
A Primary Visual Area in the Dorsal Pallium of Birds and Reptiles and Its Comparison to V1 of Mammals......Page 629
A Primary Somatosensory Area in the Dorsal Pallium of Birds and Reptiles and Its Comparison to S1 of Mammals......Page 630
Do Birds and/or Reptiles Possess a Somatomotor Dorsal Pallial Area Comparable to M1 of Mammals?......Page 631
Other Functional Areas in the Pallium of Birds and Reptiles and Comparison to Mammals......Page 632
Different Development and Adult Organization of Neocortical Layers and Hyperpallial Subdivisions......Page 633
Layers and Subdivisions of the Reptilian Dorsal Cortex. Possibilities and Uncertainties on Dorsal Pallial Evolution......Page 635
Visual Area: Retinotopy, Signal Types, Binocularity, and Perception......Page 636
Somatosensory Area: Somatotopy, Signal Types, Perception, and Multiple Maps......Page 640
Conclusions......Page 641
References......Page 642
Further Reading......Page 650
Visual Telencephalon in Reptiles......Page 651
Geniculocortical Projections......Page 652
Cellular Structure of Turtle Visual Cortex......Page 654
Responses of Visual Cortex Neurons to Visual Stimuli......Page 656
Acknowledgments......Page 657
References......Page 658
Further Reading......Page 659
Song: A Learned Behavior Used for Communication......Page 660
The Song System of Oscine Birds......Page 661
A Basal Ganglia Circuit Required for Song Learning......Page 662
Evolution of Avian Vocal Control Systems......Page 663
References......Page 665
Further Reading......Page 667
What is Vocal Learning......Page 668
Consensus Brain Systems of Vocal Learners......Page 669
Brain Regions and Connectivity......Page 670
Brain Lesions......Page 674
Brain Activation......Page 675
Consensus Auditory System......Page 677
Evolution of Vocal Learning Systems from a Common Motor Pathway......Page 678
References......Page 679
Further Reading......Page 682
Introduction......Page 683
Analyses of Taxonomic Distributions......Page 684
Experimental Tests......Page 685
Is Social Intelligence Different from Other Types of Intelligence?......Page 686
References......Page 687
Further Reading......Page 689
Introduction......Page 690
Food-Storing Behavior......Page 691
Subdivisions......Page 692
Extrinsic projections......Page 693
Neuronal nitric oxide synthase in the avian HP......Page 695
Adaptive modification of hippocampal size as a result of food-storing......Page 696
Evolutionary Considerations......Page 697
References......Page 698
Relevant Websites......Page 699
Ecology and Sensory Brain Structures......Page 700
Ecology and the Hippocampus......Page 701
Development......Page 702
Sex Differences......Page 703
Summary......Page 704
References......Page 705
Further Reading......Page 706
Glossary......Page 707
Abbreviations:Mammals ......Page 708
Abbreviations:Birds ......Page 709
Introduction......Page 710
Organization of the Cerebral Hemispheres......Page 711
The Pallial Amygdala......Page 712
The cortical and basolateral divisions of the amygdala......Page 713
Compartments of the pallium: Lateropallial and ventropallial portions of the mammalian amygdala......Page 714
Striatal and pallidal compartments within the subpallial amygdala......Page 715
The extended amygdala: A striatopallidal structure or a third subpallial compartment?......Page 716
Functional Neuroanatomy of the Mammalian Amygdala......Page 717
The amygdala as part of the olfactory and vomeronasal systems......Page 718
Brainstem sensory afferents: The amygdala as part of the gustatory, viscerosensory, and nociceptive systems......Page 719
Highly processed sensory inputs: The cortical afferents to the pallial and subpallial amygdala......Page 720
Redundant sensory pathways to the amygdala?......Page 721
Hormonal inputs to the amygdala......Page 722
Outputs of the Amygdala......Page 723
Projections from the pallial amygdala to the hypothalamus......Page 724
Amygdaloid projections to the brainstem......Page 725
Amygdalocortical and amygdalothalamic projections......Page 726
The Mammalian Amygdala: A Summary......Page 727
The Amygdala of Reptiles......Page 730
The olfacto-recipient pallial amygdala of reptiles......Page 731
Lateropallial and ventropallial territories in the amygdala of reptiles......Page 732
The olfactory cortical amygdala......Page 733
The deep lateropallial amygdala: The DLA as the reptilian homologue to the B nucleus of mammals......Page 735
The PDVRvm and LA constitute the reptilian homologue to the ABp of mammals......Page 736
The dorsomedial PDVR as the sensory interface of the reptilian amygdala......Page 737
Amygdalocortical projections......Page 738
The Reptilian Subpallial Amygdala......Page 739
The reptilian extended amygdala: The identity and divisions of the bed nucleus of the stria terminalis......Page 741
The medial extended amygdala of reptiles......Page 742
The Reptilian Amygdala: A Summary......Page 743
The Amygdala of Birds......Page 744
On the Nomenclature and Architecture of the Telencephalon of Birds......Page 745
Olfactory areas in the avian pallium: The avian cortical amygdala......Page 747
Lateral and ventral pallial derivatives in the caudal avian cerebral hemispheres......Page 748
Connections and Histochemistry of the Avian Pallial Amygdala: Comparative Implications......Page 749
Identity of the basal nucleus of the avian amygdala in the deep lateral pallium......Page 750
The homology between the AV/AM and the mammalian AB......Page 752
Amygdalocortical projections......Page 753
The occipitomesencephalic tract, the somatomotor arcopallium, and the significance of birdsong......Page 754
The medial extended amygdala of birds......Page 757
The central extended amygdala......Page 758
The Evolutionary Origins of the Amniote Amygdala......Page 760
Vomeronasal and olfactory projections to the amygdala in amphibians......Page 761
New data on the divisions of the amphibian pallium: The pallial amygdala......Page 762
The subpallial amygdala of amphibians......Page 763
The central extended amygdala of amphibians......Page 764
The roles of the central/basolateral amygdala......Page 765
Expression and acquisition of fear/aversion......Page 766
The roles of the medial extended amygdala......Page 768
The medial amygdala and reproductive function......Page 769
The medial amygdala: Defensive behavior and predator-elicited fear......Page 770
Evolution of the Emotional Brain: The Amygdala and the Evaluation of Incoming Stimuli......Page 771
References......Page 773
Further Reading......Page 786
Introduction......Page 787
Adaptations to General Constraints......Page 788
Optical Systems of Eyes......Page 789
Lenses: Multiple Protein Types and Gene Sharing......Page 790
Capturing Light: The Opsin/Retinal Solution......Page 791
Origins of Eyes......Page 793
Developmental Evidence of Eye Evolution......Page 794
Functional Evidence about Eye Evolution......Page 796
How Did Eyes Evolve?......Page 797
References......Page 798
Relevant Websites......Page 800
Visual Pigments......Page 801
Molecular Bases of UV and Violet Vision......Page 802
Perspectives......Page 804
Further Reading......Page 805
What is Olfaction?......Page 806
Components of the Vertebrate Olfactory System......Page 808
Chordates and Basal Craniates......Page 811
Lampreys......Page 812
Cartilaginous Fishes: Sharks, Skates and Rays, and Chimaeras......Page 814
Ray-Finned Fishes......Page 816
Lobe-Finned Fishes: Lungfishes and Coelacanths......Page 821
Amphibians......Page 823
Tuatara......Page 828
Squamates: Amphisbaenians, lizards, and snakes......Page 829
Crocodilians......Page 832
Birds......Page 833
Turtles......Page 835
Mammals......Page 836
Evolutionary Changes in the Organization of the Olfactory Epithelium......Page 837
Evolutionary Changes in the Organization of the Olfactory Bulbs......Page 838
Evolutionary Changes in the Organization of Central Olfactory Projections......Page 840
Evolution of Vertebrate Olfactory Subsystems......Page 841
References......Page 842
Further Reading......Page 857
Glossary......Page 858
Vomeronasal Organ......Page 860
Accessory Olfactory Bulb......Page 862
Telencephalic Targets of the Accessory Olfactory Bulb......Page 863
Origins of the Vomeronasal System......Page 865
Further Reading......Page 866
Glossary......Page 867
Central Electrosensory Circuits......Page 868
Evolution......Page 869
References......Page 871
Further Reading......Page 872
Glossary......Page 873
What is Taste?......Page 874
Ecdysozoa......Page 875
Nematodes......Page 876
Arthropods......Page 877
Mollusks......Page 879
Taste in Vertebrates and Chordates......Page 880
Solitary Chemoreceptor Cells and Schreiner Organs......Page 881
Cell types......Page 883
The Specialized Taste Organ of Frogs......Page 885
Type I taste cell......Page 886
Type III taste cell......Page 887
Evolution of Taste Preference and Taste Receptors......Page 888
References......Page 889
Relevant Websites......Page 891
Introduction......Page 892
Encoding Sound: Similar Strategies in Birds and Mammals......Page 893
Organization of the Cochlear Nuclei in Mammals and Birds......Page 894
Intracellular Physiological Responses of Cochlear Nucleus Neurons in Birds and Mammals......Page 895
Precise Synaptic Transmission......Page 896
Potassium Conductances......Page 898
Coincidence Detection and Coding of ITDs......Page 899
Delay Line - Coincidence Detection Circuits in Birds......Page 900
ITD Detection Circuits in Mammals......Page 901
Summary and Conclusions......Page 902
References......Page 903
Further Reading......Page 906
Glossary......Page 907
Introduction......Page 908
Morphology of the Tectogeniculate Projection Neurons......Page 909
Location of the Pretectogeniculate Projection Neurons......Page 910
Location of the Pretectal Projections in the GLd: Light and Electron Microscopic Findings......Page 911
Functional Considerations......Page 912
References......Page 913
Further Reading......Page 914
Introduction......Page 916
Myelin Sheaths in Invertebrates......Page 917
Morphological Features of Vertebrate Myelin......Page 919
Biochemical and Molecular Features of Vertebrate Myelin Sheaths......Page 921
References......Page 925
Further Reading......Page 931
Introduction......Page 932
Approaches to Study Cell Proliferation in the Adult Brain......Page 933
Olfactory Bulb......Page 934
Dorsal Telencephalon......Page 936
Migration......Page 941
Guidance of the Migrating Young Cells......Page 945
Regulation of the Number of New Cells by Apoptotic Cell Death......Page 946
Neuronal Differentiation......Page 947
Why Do Fish Produce New Neurons in the Adult Brain? The Numerical Matching Hypothesis......Page 948
The Lesion Paradigm......Page 949
Elimination and Removal of Damaged Cells......Page 950
Generation of New Cells......Page 951
Migration and Differentiation of New Cells......Page 952
Identification of Regeneration-Associated Proteins......Page 953
beta-Actin......Page 955
beta-Tubulin......Page 956
Somatostatin......Page 959
References......Page 962
Further Reading......Page 966
Introduction......Page 967
Fossil Brains......Page 968
The Specimens and Their Measurement......Page 970
Brains and Endocasts......Page 972
Two-Dimensional Analysis of Neocorticalization......Page 973
Three-Dimensional Analysis: Neocortex......Page 974
Caveats and Conclusions......Page 976
References......Page 977
Relevant Websites......Page 978
Constant Features of the Mammalian Isocortex......Page 979
Dorsal Cortex Contains Fewer Neurons in Nonmammalian Vertebrates......Page 980
What are the Major Changes in Cortical Neurogenesis in Mammals?......Page 981
Generation and Mode of Migration of the GABAergic Interneurons......Page 982
Basic Pattern of Cortical Neurogenesis......Page 983
Cortical Neurogenesis in Nonmammalian Cortex......Page 985
Summary and Conclusions......Page 988
References......Page 989
Further Reading......Page 992
Introduction......Page 993
The Basic Structure of Neocortex and the Transition from Dorsal Cortex of Reptiles......Page 995
The Fossil Record: How Much Neocortex Did Early Mammals Have?......Page 999
How was the Neocortex of Early Mammals Subdivided into Functionally Distinct Areas?......Page 1000
Primary Sensory Areas......Page 1001
Other Cortical Areas......Page 1005
Impressive Modifications of Small Brains......Page 1007
The Implications of Changes in Brain Size......Page 1008
Larger Brains Often Have More Areas......Page 1009
The Fossil Record Indicates that Early Mammals Had Small Brains with Little Neocortex......Page 1010
Theories of the Subsequent Evolution of Neocortex in Mammals Can Be Guided by a Theoretical Consideration of the Implications of Increasing Brain Size......Page 1011
References......Page 1012
Further Reading......Page 1014
Glossary......Page 1015
What is a Cortical Field? Homology, Homoplasy, and Analogy......Page 1016
The Development of Cortical Fields......Page 1019
Activity-independent genes intrinsic to the neocortex......Page 1020
Activity-dependent regulation of genes that control aspects of cellular morphology, connection, and function......Page 1021
Genes extrinsic to the neocortex but intrinsic to the organism contribute to aspects of cortical development and organization......Page 1022
Nurture: How Activity Contributes to the System Level Aspects of Cortical Development and Organization......Page 1026
Changes in the Size of the Cortical Sheet......Page 1028
The Module and Cortical Field Evolution......Page 1030
What Constrains Cortical Evolution?......Page 1032
Conclusions......Page 1034
References......Page 1036
Glossary......Page 1039
General Introduction to Developmental Structure in Brain Evolution......Page 1040
A Conserved Order of Neurogenesis across Mammals and Its Relationship to Brain Allometry......Page 1041
Prosomeres Are the Developmental Units Organizing the Duration of Neuron Proliferation in the Forebrain......Page 1043
Brain Adaptations, Specializations, and Residual Variance......Page 1044
Radial units and cortical areas......Page 1045
Proliferation of the Number of Cortical Areas......Page 1046
The Size of Cortical Areas, Sensory Specializations, and Behavioral Niche......Page 1048
Computational Considerations in Cortex Proliferation......Page 1051
What Are the Dynamics of Brain Scaling?......Page 1052
Small worlds......Page 1053
Exploring the Effects of Uncoordinated Scaling in a Neural Net......Page 1054
The model employed......Page 1055
Possible causes of network scaling behavior......Page 1056
What Are the Units of Brain Architecture in Development, Evolution, and Mature Function?......Page 1057
Allometric Constraints May Show Us the Scaling Properties of Brain Networks......Page 1058
References......Page 1059
Further Reading......Page 1062
Introduction......Page 1063
Taxonomic Differences in Relative Size of Brain Structures......Page 1064
Correlated Evolution between Components of Functional Systems......Page 1065
References......Page 1067
Further Reading......Page 1068
Early Development and the Evolution of Cortical Structure: Molecular Influences on Cortical Arealization......Page 1069
Development of Structural Organization: Sensory Influences on Cortical Organization and Connectivity......Page 1070
Specification of Cortical Areas: The Relationship between Inputs, Outputs, and Function......Page 1073
Rewiring Experiments and Brain Evolution......Page 1075
References......Page 1076
Further Reading......Page 1077
Glossary......Page 1078
Pyramidal Neurons......Page 1079
Inhibitory Interneurons: Basket, Chandelier, and Double Bouquet Cells......Page 1081
General Phylogenetic Patterns......Page 1082
The Distribution of Some Neuron Classes Closely Matches Phylogenetic Affinities......Page 1083
Other Phylogenetic Distributions of Cortical Neuron Classes Indicate Convergent Evolution......Page 1085
Functional Considerations......Page 1086
References......Page 1087
Further Reading......Page 1088
Reliable Measurements of Brain Size......Page 1090
The allometric formula......Page 1091
Standards for brain size comparison......Page 1092
Reference line slope......Page 1093
Progression Indices of Brain Structures in Mammals......Page 1094
Ecological Niche and Size Differences in Brains and Brain Parts......Page 1098
References......Page 1099
Further Reading......Page 1100
Introduction......Page 1101
Brain Size in Ancestral Mammals......Page 1102
Organization of Neocortex in the Smallest Mammals......Page 1103
Implications for Mammalian Brain Evolution......Page 1104
Further Reading......Page 1105
What is Domestication? What is a Domesticated Animal?......Page 1106
Domestication and Total Brain Size......Page 1108
Domestication and Brain Subdivisions......Page 1111
Domestication and the Sense Organs......Page 1114
References......Page 1115
Glossary......Page 1117
Bigger Brains Have Much More Glia......Page 1118
Why Stereological Estimates of Total Cell Number Yield Invalid Relationships......Page 1121
How to Build a Bigger Brain......Page 1122
Bigger Brains Have Relatively More Neurons in Cerebellum......Page 1123
More Neurons, Many More Non-Neuronal Cells......Page 1124
Neurons Become Larger As They Are Added; Glia Do Not......Page 1125
Conclusions......Page 1126
References......Page 1127
Further Reading......Page 1128
Glossary......Page 1129
Number of Neurons, Synapse Density, Number of Synapses per Neuron, Network Diameter......Page 1130
Axon Caliber and White Matter Volume......Page 1132
Number of Areas and Number of Area Connections per Area......Page 1133
Invariant Area-Infiltration......Page 1134
Economical Neocortex......Page 1135
Economical Satisfaction of Invariant Area-Infiltration......Page 1136
Economical Satisfaction of Invariant Well-Connectedness......Page 1137
Conclusion......Page 1139
References......Page 1140
Relevant Websites......Page 1142
Defining Sparse Coding......Page 1143
Physiological Evidence for Sparse Coding......Page 1144
Maximizing Information Transfer......Page 1145
References......Page 1148
Relevant Websites......Page 1149
Glossary......Page 1150
Introduction......Page 1151
Areas May Be Added to the Processing Network......Page 1152
The Star-Nosed Mole - A Case Study in Somatosensory Evolution......Page 1154
Behaviorally Important Areas Are Magnified in the Brain......Page 1155
A Somatosensory Fovea in the Star-Nosed Mole......Page 1156
Modules Represent Sensory Surfaces in Diverse Species......Page 1158
The Sensory Periphery Guides Aspects of Cortical Development......Page 1160
Levels of Organization......Page 1161
Potential Mechanisms of Change......Page 1162
References......Page 1165
Further Reading......Page 1167
Tactile Hair......Page 1168
Brainstem......Page 1170
Thalamus......Page 1171
Cerebral Cortex......Page 1172
References......Page 1173
Further Reading......Page 1174
Introduction......Page 1175
Wing Camber, Boundary Flow, and Lift......Page 1176
Early Neurohistology......Page 1177
Surface Features......Page 1179
Dome Neurohistology and Primary Afferent Recordings......Page 1180
Possible Roles of Tactile Receptors in Flight......Page 1181
Central Somatotopic Representation of the Bat Wing: A Neuroethological Perspective......Page 1182
Future Prospects for Somatosensory Study of the Bat Wing......Page 1184
References......Page 1185
Further Reading......Page 1186
Introduction......Page 1187
Primary Afferent Connections......Page 1188
Lamina I Projections to the Forebrain......Page 1189
Significance of the Homeostatic Afferent Representation for Emotion......Page 1190
Comparative Neurobiology of the Pain Pathway......Page 1191
The Lateral Lamina I Pathway......Page 1192
Evolution of the Human Pain Pathway......Page 1193
References......Page 1194
Further Reading......Page 1195
Introduction......Page 1196
Activation-Sensation......Page 1197
Innervation of the Viscera......Page 1198
Sensory Endings......Page 1199
Neurochemical Properties of Visceral Sensory Neurons......Page 1201
Molecular Mechanisms of Signal Transduction......Page 1202
Functional Characterization of Visceral Afferents......Page 1203
Functional Characterization of Chemosensitive Visceral Afferents......Page 1205
Central Projections of Visceral Afferents......Page 1206
Conclusion......Page 1207
References......Page 1208
Further Reading......Page 1211
Cues for Sound Localization......Page 1212
Brainstem......Page 1213
Midbrain......Page 1214
Isocortex......Page 1215
Behavioral Measures of Sound Localization......Page 1216
References......Page 1217
Further Reading......Page 1219
Increases in Absolute Brain Size and Encephalization......Page 1220
Enlargement of Auditory Structures......Page 1222
Cortical Architecture......Page 1223
Summary......Page 1224
Further Reading......Page 1225
Differences in Visual Cortex Complexity......Page 1226
Identification of V1 and V2......Page 1228
Visual Cortex of Insectivores and Nonplacental Mammals......Page 1230
Have Small Rodents Diverged from the Common Mammalian Plan?......Page 1233
The Complexity of Squirrel Visual Cortex......Page 1235
Visual Systems of the Tree Shrew and Flying Fox......Page 1238
Building Levels of Complexity: Number of Areas and Functional Modularity in Tree Shrew and Squirrel Visual Cortex......Page 1240
Cat and Ferret Visual System......Page 1243
Prosimian Visual System......Page 1245
New World and Old World Monkey Visual Systems......Page 1247
Early parallel processing......Page 1253
The Controversy over Monkey V3......Page 1254
The Middle Temporal Area, MT......Page 1256
References......Page 1257
Relevant Websites......Page 1265
Types of Retinal Fiber Decussation in the Optic Chiasm of Vertebrates......Page 1266
Optic Chiasm Development......Page 1268
Molecules That Shape the Placement and Integrity of the Chiasm......Page 1270
Molecular Differences between Uncrossed and Crossed RGCs......Page 1271
The Crossing Pathway......Page 1272
Patterning the Retina and Patterning the Chiasm: The Relationship between Them......Page 1273
References......Page 1274
Further Reading......Page 1276
Glossary......Page 1277
Introduction......Page 1278
Which Aspects of Retinal Activity Drive Eye-Specific Segregation?......Page 1279
What Cues Regulate Spatial Patterning of Eye-Specific Axonal Projections?......Page 1280
Ephrin-As Pattern Eye-Specific Axonal Domains in the LGN......Page 1281
Which Developmental Mechanisms Might Explain the Variation in Eye-Specific Lamination Seen Across Species?......Page 1283
References......Page 1284
Further Reading......Page 1286
Peripheral Taste System......Page 1287
Anatomy......Page 1289
Electrophysiology......Page 1290
Functional Neuroimaging......Page 1291
The Mammal Taste System in the Context of Vertebrate Evolution......Page 1294
References......Page 1295
Further Reading......Page 1297
Glossary......Page 1298
Spatial Coordinates......Page 1299
The otoliths......Page 1301
Evolutionary History of the Labyrinth......Page 1302
Comparative Anatomy......Page 1304
Ontogeny and Phylogeny of the Labyrinth......Page 1306
Innervation of Extraocular Muscles......Page 1307
Vestibulo-Ocular Connectivity......Page 1308
Lateral- and Frontal-Eyed Animals......Page 1309
Vestibular Output and Postural Control......Page 1311
The New Wave of Vestibular Interest......Page 1312
References......Page 1313
Further Reading......Page 1316
Social Behavior Evolves Rapidly......Page 1317
Microsatellites as trash or treasure......Page 1318
Measuring Social Behavior in the Laboratory......Page 1319
Evolutionary Lability of Receptor Distribution Patterns......Page 1320
Comparative evidence for microsatellites as a genetic mechanism......Page 1321
In vitro evidence for microsatellites as a genetic mechanism......Page 1322
Comparative Evidence in Primates for Microsatellites as a General Mechanism......Page 1323
Caveat Regarding the Importance of Development......Page 1325
References......Page 1326
Further Reading......Page 1327
Glossary......Page 1328
The Basic Vertebrate Plan......Page 1329
The Tetrapod Augmentation......Page 1330
Forebrain Motor Systems of Reptiles......Page 1331
Motor Cortex in Neurologically Primitive Mammals and the Concept of the Sensorimotor Amalgam......Page 1332
Emergence of a True Motor Cortex......Page 1333
Evolution of the CST......Page 1334
Variation in the Trajectory of CS Fibers in the Spinal Cord......Page 1335
Termination of CS Neurons......Page 1338
Cells of Origin of the CST......Page 1339
Secondary Motor Areas in Primates......Page 1340
Nomenclature......Page 1341
Differentiation of lateral premotor cortex......Page 1342
The cingulate motor areas......Page 1343
Functional Significance of the Evolution of Motor Cortex......Page 1344
Summary and Conclusions......Page 1345
References......Page 1346
Further Reading......Page 1350
Glossary......Page 1351
Introduction......Page 1352
Osteicthyes - Ray-Finned versus Lobe-Finned Fish Divergence......Page 1354
Amphibians......Page 1356
Reptiles......Page 1357
Birds......Page 1359
Mammals......Page 1360
Mammalian Basal Ganglia Evolution - Outdated Concepts and Terminology......Page 1361
References......Page 1362
Further Reading......Page 1365
Glossary......Page 1366
Gross Anatomy of the Mammalian Cerebellum......Page 1367
Comparative Anatomy of the Folial Pattern......Page 1369
Allometry and Cerebellar Size......Page 1372
Histology of the Cerebellar Cortex......Page 1373
Purkinje Cell Zones. Morphology, Connections, and Chemical Identity......Page 1375
Mossy Fiber Afferents to the Cerebellar Cortex......Page 1381
Determination and Origin of the Cerebellar Primordium......Page 1382
Fate Mapping and Clonal Analysis......Page 1384
Late Embryonic Patterning and Cerebellar Morphogenesis......Page 1386
Historical Aspects......Page 1388
The Cerebellum and Plasticity......Page 1389
References......Page 1390
Further Reading......Page 1394
What is the Prefrontal Cortex?......Page 1396
Unity and Diversity in the Prefrontal Cortex......Page 1398
Why is there a Prefrontal Cortex?......Page 1399
How did the Prefrontal Cortex Arise in Evolution?......Page 1400
Brain Size and the Scaling of the Prefrontal Cortex......Page 1401
Further Reading......Page 1402
Introduction......Page 1404
The Evolution of SWS......Page 1406
The Evolution of REM......Page 1408
The Evolution of Dreams as Emotional Simulations of Past and Future......Page 1409
Human Dreams, Present and Future......Page 1411
References......Page 1412
Further Reading......Page 1417
Introduction......Page 1418
Gross morphology......Page 1419
Cytoarchitecture......Page 1420
Intrinsic circuitry of the hippocampal region......Page 1421
Connections with the entorhinal cortex......Page 1422
Summary of Anatomy of the Hippocampal and Parahippocampal Regions......Page 1423
Entorhinal cortex......Page 1424
Perirhinal and postrhinal/parahippocampal cortices......Page 1425
Anatomical similarities......Page 1426
Anatomical differences......Page 1427
Summary of the Ancestral Homologue......Page 1428
Early Evidence on Hippocampal Function......Page 1429
Convergence of Ideas on Hippocampal Function in Humans and Experimental Animals......Page 1430
Classical conditioning of the eyeblink response......Page 1431
Retrograde amnesia......Page 1432
Understanding how place cells relate to the human hippocampus......Page 1433
Understanding how episodic memory relates to hippocampal function in experimental animals......Page 1434
Possible Divergence between Species......Page 1435
Conclusions......Page 1436
References......Page 1437
Further Reading......Page 1441
Relevant Websites......Page 1442
Introduction......Page 1443
Elephants and Long-Term, Extensive Memory......Page 1444
Information Processing: Neurons of Elephants and Large-Brained Primates......Page 1445
Relating Brain Information Processing to Behavior......Page 1447
References......Page 1448
Relevant Websites......Page 1449
Introduction......Page 1450
The Lateral Geniculate Nucleus......Page 1451
The Visual Pulvinar......Page 1454
The Somatosensory Thalamus: The Ventroposterior Complex and the Adjoining Posterior Complex......Page 1457
The Auditory Thalamus: The Medial Geniculate Complex......Page 1459
The Motor Thalamus: The Ventral Lateral Complex and the Ventral Anterior Complex......Page 1461
The Mediodorsal and Intralaminar Thalamic Nuclei......Page 1462
Conclusions......Page 1463
References......Page 1464
Further Reading......Page 1467
How Did the Dorsal Thalamus Evolve? The Problem and the Evidence......Page 1468
Independent Evolution of the Collothalamus and Lemnothalamus among Amniotes: Different Patterns of Evolution......Page 1471
Summary and Concluding Remarks......Page 1472
Further Reading......Page 1473
Introduction......Page 1475
The Primates......Page 1476
Early views......Page 1478
Modern ideas about primate origins......Page 1479
Primates among mammals: Grandorder Archonta......Page 1480
Haplorhine/anthropoid origins and hominin origins......Page 1481
Encephalization and Gross Morphology......Page 1482
Chemical Senses......Page 1484
Eye and retina......Page 1486
Lateral geniculate nucleus and superior colliculus......Page 1488
Primary visual area......Page 1489
Extrastriate visual cortex......Page 1490
Peripheral mechanisms......Page 1491
Cortical somatosensory systems......Page 1492
Corticospinal tract......Page 1494
Auditory System......Page 1495
Limbic System......Page 1496
Posterior parietal cortex......Page 1498
Prefrontal cortex......Page 1499
Conclusions and New Directions......Page 1501
References......Page 1502
Further Reading......Page 1508
Introduction......Page 1509
The Somatosensory and Motor Systems of the Mammalian Ancestors of Primates: Inferences from the Systems of Rodents, Tree Shrews, and Other Mammals......Page 1510
Somatosensory and Motor Systems of Early Primates: Inferences from Prosimians and Other Primates......Page 1515
New and Old World Monkeys: Similarities and Variations......Page 1520
The Anterior Parietal Cortex of Simians......Page 1521
The Posterior Parietal Cortex of Simians......Page 1522
The Motor and Premotor Cortex of Simians......Page 1523
Sensorimotor Systems in Apes and Humans......Page 1524
Early Ancestors of Primates......Page 1526
Hominoids (Apes and Humans)......Page 1527
References......Page 1528
Further Reading......Page 1531
Glossary......Page 1532
What Is a Primate?......Page 1533
Early Explanations for Primate Origins......Page 1535
Orbital Convergence, Postorbital Bar, Manual Grasping, and Visual Predation......Page 1536
The Primate Postorbital Bar......Page 1538
Ancestral Primates Were Not Nocturnal......Page 1540
Predatory Adaptations of the Ancestral Primates Were Not Visual......Page 1541
Visual Adaptations of Ancestral Primates Were Not Predatory......Page 1542
Visual System......Page 1543
Hand Motor Control......Page 1544
Eye-Hand Coordination......Page 1545
Locomotor System......Page 1546
The Fossil Record of Primate Origins......Page 1547
Conclusions......Page 1548
References......Page 1549
Further Reading......Page 1551
Evolution and Distribution of Primate Photopigments......Page 1552
Platyrrhine Color Vision......Page 1555
Conclusions and Continuing Issues......Page 1556
References......Page 1557
Further Reading......Page 1558
Introduction......Page 1559
Background and Some Definitions......Page 1561
The Evolution of P and M Pathways......Page 1564
Is the K Pathway Evolutionarily Old?......Page 1566
Color Vision in Primates and the Evolution of P and K Pathways......Page 1568
Ocular Dominance and Other Properties......Page 1569
The Evolution of Dorsal and Ventral Cortical Streams......Page 1570
Conclusions, Questions, and Future Strategies......Page 1574
References......Page 1576
Relevant Websites......Page 1580
Introduction......Page 1581
Location of the Auditory Cortex in the Superior Temporal Lobe......Page 1582
Organization of the Auditory Cortex of Monkeys......Page 1584
Organization of the Auditory Cortex of Great Apes and Humans......Page 1585
References......Page 1588
Further Reading......Page 1591
The Importance of the Sense of Taste......Page 1592
Early Greek Theories of Taste Sensations......Page 1593
Sweet Receptor Theories......Page 1594
The Multipoint Attachment Theory......Page 1595
Why Are Such a Large Number of Attachment Points Necessary?......Page 1597
Conclusions......Page 1598
Further Reading......Page 1599
Glossary......Page 1600
Receptors......Page 1601
Distribution of the OR Gene Repertoire in Humans......Page 1602
Mouse......Page 1604
Evolution of the OR Gene Repertoire......Page 1605
Conclusions......Page 1606
References......Page 1608
Relevant Websites......Page 1610
Introduction......Page 1611
Strepsirrhine VNO Complex......Page 1613
Chemosensory VNO......Page 1614
Fossil evidence......Page 1615
References......Page 1617
Further Reading......Page 1618
The Flocculonodular Lobe......Page 1619
The Lateral Hemispheres......Page 1620
Comparative Cerebellar Anatomy......Page 1622
The Ape Cerebellum Is Not an Allometrically Enlarged Monkey Cerebellum......Page 1623
Is the Human Cerebellum an Allometrically Enlarged Ape Cerebellum?......Page 1624
References......Page 1625
Further Reading......Page 1626
Cortex for Central Control of Movement......Page 1627
Connectional Neuroanatomy......Page 1628
Comparative Morphology......Page 1629
Command and Control......Page 1631
Communication......Page 1632
References......Page 1633
Further Reading......Page 1634
Glossary......Page 1636
Introduction......Page 1637
Cortical Circuits: Widely Shared Features of Connectivity......Page 1638
Elementary Units of Operation: Macrocolumns and Minicolumns......Page 1640
Distribution of Neurons......Page 1641
Proportion of Interneurons......Page 1643
Chandelier cells......Page 1644
Double bouquet cells......Page 1646
Morphology of synapses......Page 1648
Cross-sectional length of synaptic junctions......Page 1650
Density of synapses......Page 1652
Number of Synapses per Neuron......Page 1653
Concluding Remarks......Page 1654
References......Page 1655
The Study of Brain Evolution......Page 1660
What Is a Pyramidal Cell?......Page 1662
The Macaque Monkey......Page 1663
Sensorimotor cortex......Page 1664
Cingulate cortex......Page 1666
Prefrontal cortex......Page 1668
Regional Specialization in the Pyramidal Cell Phenotype in the Macaque Monkey Cortex: Functional Interpretations......Page 1671
Cellular level......Page 1673
Systems level......Page 1678
Circuits and memory formation......Page 1680
More on the structure/function relationship......Page 1681
Visual Cortex......Page 1683
Sensorimotor Cortex......Page 1684
Prefrontal Cortex......Page 1686
Specialization of the Pyramidal Cell during Cortical Evolution......Page 1688
How Complex Can Pyramidal Cells Become?......Page 1692
A New Model for Circuit Specialization during Cortical Evolution......Page 1694
A Note on Possible False Positives through Sampling Bias......Page 1697
The Paradox in the Frontal Lobe......Page 1701
References......Page 1702
Further Reading......Page 1711
Glossary......Page 1712
Neocortical Origins......Page 1713
Key Events in Cortical Development......Page 1714
The Radial Unit Hypothesis......Page 1717
Kinetics of cell division......Page 1718
Modes of cell division......Page 1719
Programmed cell death......Page 1721
The Protomap Hypothesis of Cortical Parcellation......Page 1722
References......Page 1724
Further Reading......Page 1728
Introduction: What is Behavioral Innovation?......Page 1729
Neurological Correlates of Innovation......Page 1730
Social and Ecological Correlates of Innovation......Page 1731
Discussion: Cognitive Convergence - Are Primates Special?......Page 1732
Further Reading......Page 1733
Why Is the Cortex Folded?......Page 1734
A Tension-Based Hypothesis of Cortical Folding......Page 1735
Surface Representations......Page 1736
Geographic Correspondences......Page 1737
Gyral folds along the V1/V2 border......Page 1738
Area MT and a functional mismatch in the STS......Page 1739
Differential expansion of prefrontal cortex......Page 1740
References......Page 1741
Relevant Websites......Page 1743
Components of the Forebrain Commissural System......Page 1744
Exuberance and Myelinization......Page 1745
Other Acalossal Areas......Page 1746
Laminar Organization and Regional Variance......Page 1747
Phrenology of the CC......Page 1748
Behavior......Page 1749
Transcortical monitoring by the amygdala......Page 1750
Memory......Page 1751
References......Page 1752
Further Reading......Page 1756
Glossary......Page 1757
Fossil Evidence Relevant for Reconstructing the Size and Shape of the Brain......Page 1758
Packing methods......Page 1760
CT slices and virtual endocasts......Page 1761
Extrapolations from ecto- and endocranial linear metrics......Page 1762
Indices for Estimating and Comparing the Relative Sizes of Brains......Page 1763
Other standards for brain size comparison......Page 1764
Fronto-orbital sulcus......Page 1765
Parietal expansion......Page 1766
Cranial venous sinuses......Page 1767
Terminology......Page 1768
Organizing the Hominin Fossil Record......Page 1769
Review of Individual Hominin Fossil Taxa......Page 1770
Possible and Probable Primitive Hominins......Page 1771
Archaic Hominins......Page 1773
Megadont Archaic Hominins......Page 1777
Transitional Homo......Page 1780
Premodern Homo......Page 1782
Anatomically Modern Homo......Page 1788
Earliest appearance of derived modern human morphology......Page 1790
Earliest appearance of increase in absolute and relative brain size......Page 1792
Appearance of derived modern human CNS morphology in relation to brain size......Page 1794
References......Page 1795
Further Reading......Page 1802
Glossary......Page 1803
Human Life History......Page 1804
Implications for Behavioral and Cognitive Maturation of Human Children......Page 1808
Evolution of Human Brains and Life History......Page 1809
References......Page 1810
Further Reading......Page 1811
Role of emissary veins......Page 1812
Patterns of cranial blood flow in apes, hominins, and contemporary people......Page 1813
Relationship of vascular pattern to brain size......Page 1814
The Cranial Radiator Was a Prime Releaser, Not a Prime Mover of Human Encephalization......Page 1815
New data for frequency of enlarged occipital/marginal venous sinuses in Paranthropus......Page 1816
Further Reading......Page 1817
Glossary......Page 1819
Evolutionary History of the Hominoids......Page 1820
History of Studies Concerning Hominoid Cortical Histology......Page 1821
Architecture of the Cortex......Page 1822
Primary Visual Cortex......Page 1823
Auditory Cortex......Page 1826
Primary Motor Cortex......Page 1828
Inferior Frontal Cortex......Page 1830
Prefrontal Cortex......Page 1831
Anterior Cingulate Cortex......Page 1832
The Emergence of Cell Types and Their Distribution......Page 1833
The Evolution of Cortical Asymmetries......Page 1834
How Much Variation in Cortical Architecture Can be Attributed to Scaling versus Specialization?......Page 1835
Genomic Data Provide Insights into Cortical Specializations......Page 1836
Acknowledgments......Page 1837
References......Page 1838
Further Reading......Page 1842
Glossary......Page 1843
Bilateral Symmetry......Page 1844
The Trade-Off between Symmetry and Specialization......Page 1845
Handedness......Page 1846
Visual Asymmetries......Page 1847
Summary......Page 1848
Cerebral Asymmetry......Page 1849
Genetic Models......Page 1850
The Trade-Off between Symmetry and Specialization: A Genetic Perspective......Page 1852
Conclusions......Page 1854
References......Page 1855
Further Reading......Page 1858
Ventral and Dorsal Pathways......Page 1859
Subdivisions Within the Dorsal Pathway......Page 1860
The Ventral-Dorsal Subdivision: Grasping......Page 1861
The Ventral-Dorsal Subdivision: Peripersonal Space......Page 1862
Primate Tool Use and the Ventral-Dorsal Stream......Page 1863
Human Specializations for Tool Use and Manual Gesture......Page 1864
Production-Level Representations......Page 1865
Conclusions......Page 1866
References......Page 1867
Further Reading......Page 1870
Introduction......Page 1871
Posterior Parietal Area 5......Page 1872
Effector Specific Network......Page 1873
The Evolution of Posterior Parietal Cortex......Page 1874
References......Page 1877
Further Reading......Page 1879
The Original Mirror System Hypothesis......Page 1880
Elaborating the Stages for the MSH......Page 1881
Multimodal Mirror Neurons......Page 1882
A broader view of the macaque mirror system......Page 1883
The riddle of Wernicke’s area......Page 1884
Further Reading......Page 1885
Introduction......Page 1886
Cortical Maps......Page 1887
Improbable Retinotopy......Page 1889
Common areas: V1, V2, and MT......Page 1890
V3 and V3A......Page 1892
Functionally Defined Areas......Page 1893
References......Page 1895
Glossary......Page 1899
How to Differentiate Innate Mechanisms from Common Developmental Paths (Nature vs. Nurture)......Page 1900
Early Deprivation......Page 1901
Face-Processing Regions in the Macaque Brain......Page 1902
Visual System Development in the Macaque......Page 1903
Models of Face-Processing Acquisition......Page 1904
References......Page 1905
Further Reading......Page 1907
Introduction: Emotion Is Necessary for Survival......Page 1908
Subconscious evaluative processes......Page 1909
Emotions are negatively biased......Page 1910
Hedonic facial reactions to taste......Page 1911
The role of social experience......Page 1912
Facial expression repertoires are similar among closely related species......Page 1914
Primate facial expressions share structural elements......Page 1915
Facial expressions as biological universals......Page 1916
The FACS......Page 1917
The chimpanzee FACS......Page 1918
Building Blocks for Complex Emotions......Page 1919
Complex social environments and social relationships......Page 1921
Nonlinear hierarchies and fission-fusion societies......Page 1922
Social Emotions......Page 1923
Facial displays of pride, embarrassment, guilt, and shame......Page 1924
Brain Systems Involved in Social Emotions......Page 1925
Precursors in the Evolution of Human Emotion: A Final Word......Page 1927
References......Page 1929
Further Reading......Page 1932
Relevant Websites......Page 1933
Homologues and Analogues of Laughter and Crying......Page 1934
Neural Correlates in Primates......Page 1935
Neural Correlates in Humans......Page 1936
Conclusions......Page 1937
Further Reading......Page 1938
Background and History......Page 1939
Sterology and Development......Page 1941
Uncertainty, Dopamine, and Serotonin......Page 1942
Social Behavior and Vasopressin......Page 1943
Further Reading......Page 1944
Glossary......Page 1945
Distribution of Gonadal Hormone Receptors in the Brain......Page 1946
Sex-Typed Toy Preference......Page 1947
Learning and Memory Abilities in Infancy......Page 1948
Sex Differences in Brain Areas Related to Cognitive Abilities......Page 1949
Sex Differences in Cognitive Abilities in Humans......Page 1950
Conclusions......Page 1952
References......Page 1953
Further Reading......Page 1955
Glossary......Page 1956
References......Page 1959
Further Reading......Page 1960
The Interpretive Nature of Consciousness......Page 1961
Interpretive Processes in the Two Hemispheres......Page 1962
An Evolutionary Perspective......Page 1964
References......Page 1965
Further Reading......Page 1966
Introduction......Page 1967
The Reinterpretation Hypothesis......Page 1968
Mirror Self-Recognition......Page 1969
Episodic Memory: The Self in Time......Page 1970
Gaze-Following......Page 1971
Understanding Seeing......Page 1973
Intentional Communication......Page 1975
Imitation Learning......Page 1976
Physical Cognition......Page 1978
Conclusions......Page 1980
References......Page 1982
Further Reading......Page 1986
Glossary......Page 1987
Linguistic Context of Language Adaptation......Page 1989
Gestural Language: Neural Correlates and Evolutionary Scenarios......Page 1990
Allometric Deviations Potentially Associated with Language Adaptation......Page 1991
Connectional Homologies and Dishomologies Relevant to Language......Page 1993
Functional Dissociation of Call and Speech Motor Control......Page 1995
Lateralization of Language Functions......Page 1996
The Mirror System......Page 1998
Genes Affecting Language Processing......Page 1999
Evolutionary Scenarios......Page 2000
Co-Evolutionary Scenarios......Page 2001
Degenerative Processes as Possible Contributors to Language Evolution......Page 2002
Conclusions......Page 2003
References......Page 2004
Further Reading......Page 2005
The Nuclear Symptoms of Schizophrenia and the Central Paradox......Page 2006
The Problem of Language for Evolutionary Theory......Page 2007
Darwin’s Intuition on Sexual Selection......Page 2008
Paul Broca and Cerebral Asymmetry......Page 2009
The Torque and Related Asymmetries in Psychosis......Page 2010
The Linguistic Sign Is Bihemispheric......Page 2011
The Human Brain as a Four-Chambered Organ......Page 2012
The Deictic Origin and the Performative Hypothesis......Page 2014
XY Homology and the Xq21.3/Yp Translocation......Page 2016
Sexual Selection and the Mate Recognition Principle......Page 2017
Species-Specific Variation Is Epigenetic......Page 2018
Speciation Events Occur on the Heterogametic Chromosome......Page 2019
Conclusions......Page 2020
References......Page 2021
Further Reading......Page 2024




نظرات کاربران