دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Y. C. Lee (ed.)
سری:
ISBN (شابک) : 9971505290, 9971505304
ناشر: World Scientific
سال نشر: 1988
تعداد صفحات: 425
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 59 مگابایت
در صورت تبدیل فایل کتاب Evolution, Learning and Cognition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تکامل، یادگیری و شناخت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلد بررسی اولین تلاش برای ارائه یک نمای کلی جامع از این توسعه هیجان انگیز و به سرعت در حال تحول را نشان می دهد. این کتاب شامل مقالات سفارشی ویژه توسط محققان برجسته در زمینه شبکه های عصبی و سیستم های اتصال گرا، سیستم های طبقه بندی کننده، سیستم های شبکه تطبیقی، الگوریتم ژنتیک، اتوماتای سلولی، سیستم های ایمنی مصنوعی، ژنتیک تکاملی، علوم شناختی، محاسبات نوری، بهینه سازی ترکیبی و سایبرنتیک است. .
This review volume represents the first attempt to provide a comprehensive overview of this exciting and rapidly evolving development. The book comprises specially commissioned articles by leading researchers in the areas of neural networks and connectionist systems, classifier systems, adaptive network systems, genetic algorithm, cellular automata, artificial immune systems, evolutionary genetics, cognitive science, optical computing, combinatorial optimization, and cybernetics.
CONTENTS PREFACE Part One MATHEMATICAL THEORY Connectionist Learning Through Gradient Following INTRODUCTION CONNECTIONIST SYSTEMS LEARNING Supervised Learning vs. Associative Reinforcement Learning FORMAL ASSUMPTIONS AND NOTATION BACK-PROPAGATION ALGORITHM FOR SUPERVISED LEARNING Extended Back-Propagation REINFORCE ALGORITHMS FOR ASSOCIATIVE REINFORCEMENT LEARNING Extended REINFORCE Algorithms DISCUSSION SUMMARY REFERENCES Efficient Stochastic Gradient Learning Algorithm for Neural Network 1 Introduction 2 Learning as Stochastic Gradient Descents 3 Convergence Theorems for First Order Schemes 4 Convergence of the Second Order Schemes 5 Discussion References INFORMATION STORAGE IN FULLY CONNECTED NETWORKS 1 INTRODUCTION 1.1 Neural Networks 1.2 Organisation 1.3 Notation 2 THE MODEL OF McCULLOCH-PITTS 2.1 State-Theoretic Description 2.2 Associative Memory 3 THE OUTER-PRODUCT ALGORITHM 3.1 The Model 3.2 Storage Capacity 4 SPECTRAL ALGORITHMS 4.1 Outer-Products Revisited 4.2 Constructive Spectral Approaches 4.3 Basins of Attraction 4.4 Choice of Eigenvalues 5 COMPUTER SIMULATIONS 6 DISCUSSION A PROPOSITIONS B OUTER-PRODUCT THEOREMS C PROOFS OF SPECTRAL THEOREMS References NEURONIC EQUATIONS AND THEIR SOLUTIONS 1. Introduction 1.1. Reminiscing 1.2. The 1961 Model 1.3. Notation 2. Linear Separable NE 2.1 . Neuronic Equations 2.2. Polygonal Inequalities 2.3. Computation of the n-expansion of arbitrary l.s. functions 2.4. Continuous versus discontinuous behaviour: transitions 3. General Boolean NE 3.1. Linearization in tensor space 3.2. Next-state matrix 3.3. Normal modes, attractors 3.4. Synthesis of nets: the inverse problem 3.5. Separable versus Boolean nets; connections with spin formalism References The Dynamics of Searches Directed by Genetic Algorithms The Hyperplane Transformation. The Genetic Algorithm as a Hyperplane-Directed Search Procedure (1) Description of the genetic algorithm (2) Effects of the S\'s on the search generated by a genetic algorithm. (3) An Example. References. PROBABILISTIC NEURAL NETWORKS 1. INTRODUCTION 2. MODELING THE NOISY NEURON 2.1. Empirical Properties of Neuron and Synapse 22. Model of Shaw and Vasudevan 2.3. Model of Little 2.4. Model of Taylor 3. NONEQUILIBRIUM STATISTICAL MECHANICS OF LINEAR MODELS 3.1. Statistical Law of Motion - Markov Chain and Master Equation 3.2. Entropy Production in the Neural 3.3. Macroscopic Forces and Fluxes 3.4. Conditions for Thermodynamic Equilibrium 3.5. Implications for Memory Storage: How Dire? 4. DYNAMICAL PROPERTIES OF NONLINEAR MODELS 4.1. Views of Statistical Dynamics 4.2. Multineuron Interactions, Revisited 4.3. Cognitive Aspects of the Taylor Model 4.4. Noisy RAMS and Noisy Nets 5. THE END OF THE BEGINNING ACKNOWLEDGMENTS APPENDIX. TRANSITION PROBABILITIES IN 2-NEURON NETWORKS REFERENCES Part Two ARCHITECTURAL DESIGN Some Quantitative Issues in the Theory of Perception I. PERFORMANCE Optimal Performance Discriminability Field Theory and Statistical Mechanics Likely and Unlikely Distortions Local versus Non-local Computations Some Questions Performance of Neural Nets II. MODELS Feature Detectors Ising Spins in Random Fields Linear Filters Perception by Steepest Descent III. NETWORKS Feed Forward Net and Grandmother Cells Visual Perception by Neural Nets Generalization The Discriminant in Neural Nets Neural Spike Trains ACKNOWLEDGEMENTS REFERENCES SPEECH PERCEPTION AND PRODUCTION BY A SELF-ORGANIZING NEURAL NETWORK Abstract 1. The Learning of Language Units 2. Low Stages of Processing: Circular Reactions and the Emerging Auditory and Motor Codes 3. The Vector Integration to Endpoint Model 4. Self-Stabilization of Imitation via Motor-to-Auditory Priming 5. Higher Stages of Processing: Context-Sensitive Chunking and Unitization of the Emerging Auditory Speech Code 6. Masking Fields References NEOCOGNITRON: A NEURAL NETWORK MODEL FOR VISUAL PATTERN RECOGNITION 1. INTRODUCTION 2. THE STRUCTURE AND BEHAVIOR OF THE NETWORK 2.1 Physiological Background 2.2 The Structure of the Network 2.3 Deformation- and Position-Invariant Recognition 2.4 Mathematical Description of the Cell\'s Response 3. SELF-ORGANIZATION OF THE NETWORK 3.1 Learning without a Teacher 3.1.1 Reinforcement of maximum-output cells 3.1.2 Generation of a feature-extracting S-cell 3.1.3 Development of homogeneous connections 3.1.4 Initial values of the variable connections 3.1.5 Mathematical description of the reinforcement 4. HANDWRITTEN NUMERAL RECOGNITION 5. DISCUSSION REFERENCES Part Three APPLICATIONS LEARNING TO PREDICT THE SECONDARY STRUCTURE OF GLOBULAR PROTEINS Acknowledgements References Figure Legends Exploiting Chaos to Predict the Future and Reduce Noise Abstract 1 Introduction 1.1 Chaos and randomness 2 Model Building 2.1 State space reconstruction 2.2 Learning nonlinear transformations 2.2.1 Representations 2.2.2 Local approximation 2.2.3 Trajectory segmenting 2.2.4 Nonstationarity 2.2.5 Discontinuities 2.2.6 Implementing local approximation on computers 2.2.7 An historical note 2.3 Comparison to statistically motivated methods 3 Scaling of Error estimates 3.1 Dependence on number of data points 3.2 Dependence on extrapolation time 3.2.1 Higher order Lyapunov exponents 3.2.2 Direct forecasting 3.2.3 Iterative forecasting 3.2.4 Temporal scaling with noise 3.3 Continuous time 3.4 Numerical results 3.5 Is there an optimal approach? 4 Experimental Data Analysis 4.1 Computing fractal dimension: A review 4.2 More accurate data analysis with higher order approximation 4.3 Forecasting as a measure of self-consistency 5 Noise Reduction 6 Adaptive Dynamics 7 Conclusions References How Neural Nets Work* 1. Introduction 2. Backpropagation 3. Prediction 4. Why It Works 5. Conclusions References PATTERN RECOGNITION AND SINGLE LAYER NETWORKS Distinctions and Differences Adaptive Pattern Classifiers Discriminant Functions Choosing A Discriminant Function The Concept of Order Choosing a $ Function Storage Capacity of a $ Machi Supervised Learning Problem Optimal Associative Mappings Perceptron Learning Rule Symmetry Detection Problem Simulation Description Simulation Results Implementing Invariances Implementing Invariances: General Case Conclusion References WHAT IS THE SIGNIFICANCE OF NEURAL NETWORKS FOR AI ? 1. INTRODUCTION 2. Associative Memory 3. ATTENTIVE ASSOCIATIVE MEMORY 4. Conclusion 5. Other attributes yet to be discovered 6. REFERENCES SELECTED BIBLIOGRAPHY ON CONNECTIONISM Introduction HIERTALKER: A DEFAULT HIERARCHY OF HIGH ORDER NEURAL NETWORKS THAT LEARNS TO READ ENGLISH ALOUD 1. Introduction 2. How HIERtalker works 3. The Training Sets 4. Conclusion References Acknowledgments