دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Samiksha Singh, Tajammul Husain, Vijay Pratap Singh, Durgesh K. Tripathi, Nawal Kishore Dubey, Sheo Mohan Prasad سری: ISBN (شابک) : 1119744687, 9781119744689 ناشر: Wiley سال نشر: 2022 تعداد صفحات: 451 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 10 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Ethylene in Plant Biology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اتیلن در زیست شناسی گیاهی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
منابع جامعی که نقش اتیلن در تنظیم رشد گیاه، تنظیم ژن، رشد ریشه، تحمل تنش و موارد دیگر را شرح می دهد
اتیلن در زیستشناسی گیاهی تحقیقات اتیلن را از آزمایشگاههای پیشرو در سراسر جهان ارائه میکند تا به خوانندگان این امکان را بدهد که پوشش بنیادی قوی این موضوع را به دست آورند و به تحقیقات بیشتر اتیلن در رابطه با زیستشناسی گیاهی کمک کنند. این کار ایده های کلی و همچنین دانش فنی و خاص تر را پوشش می دهد و نقش کلی اتیلن را در بیولوژی گیاهی به عنوان یک هورمون گیاهی گازی که به عنوان یک مولکول سیگنال دهنده مهم ظاهر شده است که چندین مرحله از چرخه زندگی یک گیاه را تنظیم می کند، توضیح می دهد. ایده های پوشش داده شده در این کار از کشف اتیلن گرفته تا نقش گسترده آن در رشد و نمو گیاهان و تا موضوعات مهمی مانند سازگاری با استرس را شامل می شود.
نوشته شده توسط نویسندگان بسیار ماهر در زمینه های مرتبط با زیست شناسی گیاهی و تحقیقات، این کار به 20 فصل تقسیم شده است که هر فصل جنبه خاصی از اتیلن یا تعامل بین اتیلن و سلامت گیاه موضوعات مورد بحث در متن عبارتند از:
برای زیست شناسان، دانشمندان، محققان و سیاست گذاران در کشاورزی و صنایع دارویی، اتیلن در بیولوژی گیاهی یک منبع کلیدی برای und است پیشرفت هنر در این زمینه و ایجاد پایه ای از دانش که می تواند تلاش های تحقیقاتی آینده و کاربردهای عملی را تقویت کند.
Comprehensive resource detailing the role of ethylene in plant development regulation, gene regulation, root development, stress tolerance, and more
Ethylene in Plant Biology presents ethylene research from leading laboratories around the globe to allow readers to gain strong foundational coverage of the topic and aid in further ethylene research as it pertains to plant biology. The work covers general ideas as well as more specific and technical knowledge, detailing the overall role of ethylene in plant biology as a gaseous plant hormone that has emerged as an important signaling molecule which regulates several steps of a plant’s life cycle. The ideas covered in the work range from discovery of ethylene, to its wide roles in plant growth and development, all the way to niche topics such as stress acclimation.
Written by highly qualified authors in fields directly related to plant biology and research, the work is divided into 20 chapters, with each chapter covering a specific facet of ethylene or the interaction between ethylene and plant health. Topics discussed in the text include:
For biologists, scientists, researchers, and policy makers in the agriculture and pharmaceutical industries, Ethylene in Plant Biology is a key resource to understand the state of the art in the field and establish a foundation of knowledge that can power future research efforts and practical applications.
Cover Title Page Copyright Page Contents List of Contributors Preface Chapter 1 Ethylene Implication in Root Development 1.1 Ethylene and Its Role in Overall Plant Development 1.2 Ethylene Response Pathway in Plants 1.3 Root Development in Plants 1.3.1 Organization of Plant Root Systems 1.3.2 Factors Controlling Root Development 1.4 Ethylene-Mediated Regulation of Root Development 1.4.1 Ethylene and Primary Root Growth 1.4.2 Ethylene and Lateral Root Development 1.4.3 Ethylene and Root Hair Development 1.4.4 Ethylene and Tropic Responses of RSA 1.5 Conclusions and Future Perspectives References Chapter 2 Crosstalk of Ethylene and Other Phytohormones in the Regulation of Plant Development 2.1 Introduction 2.2 Ethylene in the Regulation of Plant Development 2.3 Ethylene Crosstalk with Other Hormones During Plant Development 2.3.1 Ethylene and Auxin 2.3.2 Ethylene and Gibberellic Acid 2.3.3 Ethylene and Cytokinin 2.3.4 Ethylene and Abscisic Acid 2.3.5 Ethylene and Salicylic Acid 2.3.6 Ethylene and Jasmonic Acid 2.3.7 Ethylene and Brassinosteroids 2.3.8 Ethylene and Strigolactones 2.4 Conclusion References Chapter 3 Ethylene and Regulation of Metabolites in Plants 3.1 Introduction 3.2 Importance of Metabolites in Plants 3.3 Influence of Ethylene on the Regulation of Plant Metabolites 3.3.1 Influence on Primary Metabolites 3.3.2 Influence on Secondary Metabolites 3.3.3 Terpenoids 3.4 Conclusion References Chapter 4 Ethylene as a Multitasking Regulator of Abscission Processes 4.1 Introduction 4.2 Ethylene as a Signal for Separation in Abscising Organs 4.2.1 Promotion of Organ Abscission 4.2.2 Developmentally Timed Abscission 4.2.3 Organ Separation Triggered by Exogenous Factors 4.3 Ethylene Function in the Abscission Zone 4.3.1 Abscission Zone 4.3.2 Ethylene as a Stimulator of Abscission Zone Activity 4.3.3 Cell Wall Reorganization 4.3.4 Modifications of Redox Balance and Lipid Homeostasis 4.3.5 Spatial Diversity of Processes Occurring in the Abscission Zone 4.4 Ethylene and Hormonal Co-Workers 4.4.1 Abscisic Acid 4.4.2 Auxins 4.4.3 Jasmonates, Gibberellins, and Other Signaling Compounds 4.5 Conclusions and Future Perspectives References Chapter 5 Ethylene: : A Powerful Coordinator of Drought Responses 5.1 Drought as a Limiting Factor for Plant Growth and Development 5.2 Roots First Encounters Drought Stress 5.3 The Response of Aboveground Parts to Water Deficits in Soil 5.4 The ET-Dependent Mechanism that Plants Utilize to Cope with the Effects of Drought 5.5 Ethylene Interactions with Other Hormones in Drought Responses 5.6 Conclusions and Future Prospects References Chapter 6 Current Understanding of Ethylene and Fruit Ripening 6.1 Introduction 6.2 Ethylene and Fruit Ripening 6.3 Ethylene Biosynthesis in Fruits 6.3.1 ACC Synthase 6.3.2 ACC Oxidase in Fruits 6.4 Ethylene Perception and Signaling 6.5 Altered Ethylene Perception Impairs Fruit Ripening 6.6 Transcriptional and Epigenetic Regulation of Fruit Ripening 6.7 Ripening-Related Promoters 6.8 Genetic Manipulation of Fruit Ripening 6.9 Conclusions Acknowledgements References Chapter 7 Ethylene and ROS Crosstalk in Plant Developmental Processes 7.1 Introduction 7.1.1 Ethylene Acts as a Plant Hormone in Gaseous Form 7.1.2 ROS/AOS as a Signal Transduction Molecule: An Overview 7.2 ET Releases Seeds, Breaks Bud Dormancy, and Promotes Germination 7.2.1 Interaction of Ehylene and Reactive Oxygen Species (ROS) in Seed and Bud Dormancy Release and Germination 7.3 Ethylene Regulates Cell Division and Cell Elongation 7.3.1 Ethylene Regulates Cell Division 7.3.2 Ethylene and Cell Elongation 7.4 Ethylene and Apical Hook Development 7.5 Ethylene and Hypocotyl Growth 7.6 Ethylene and Root Growth Development 7.7 Ethylene in Leaf Growth and Development 7.8 Ethylene Induces Epinasty and Hyponasty 7.9 Ethylene and Flower Development 7.10 Ethylene Promotes the Ripening of Some Fruits 7.11 Ethylene Promotes Leaf, Flower, and Fruit Abscission 7.12 Ethylene Induces Senescence 7.12.1 Ethylene in Leaf Senescence 7.12.2 Ethylene in Flower Senescence 7.12.3 Ethylene in Fruit Senescence 7.13 Ethylene and Cell Death 7.14 Concluding Remarks and Perspectives References Chapter 8 Role of Ethylene in Flower and Fruit Development 8.1 Introduction 8.2 Involvement of Ethylene in the Control of the Flowering Transition 8.3 Involvement of Ethylene in Flower Development 8.3.1 Stamen and Pollen Development 8.3.2 Ovary and Ovules Development 8.3.3 Petal Development and Flower Opening 8.3.4 Floral Organ Senescence and Abscission 8.4 Involvement of Ethylene in Sex Determination and Unisexual Flower Development 8.5 Involvement of Ethylene in Fruit Development 8.5.1 Ethylene Suppresses Fruit Set and Early Fruit Development 8.5.2 Ethylene Regulation of Fruit Shape References Chapter 9 Ethylene and Nutrient Regulation in Plants 9.1 Introduction 9.2 Biosynthesis and Signaling of Ethylene 9.3 Availability of Mineral Nutrients in Plants 9.4 Ethylene and Regulation of Mineral Nutrients in Plants 9.4.1 Macronutrients 9.4.2 Micronutrients 9.4.3 Beneficial Elements 9.5 Conclusion and Future Prospects References Chapter 10 Plant Metabolism Adjustment in Exogenously Applied Ethylene under Stress 10.1 Introduction 10.2 Phytohormones and Stress 10.3 Ethylene 10.4 Ethylene and Stress 10.4.1 Salinity 10.4.2 Metal Toxicity 10.4.3 Flooding Stress 10.4.4 Low-Temperature Stress 10.4.5 High-Temperature and Humidity Stress 10.4.6 Mechanical Stress (Wounding) 10.5 Concluding Remarks References Chapter 11 Role of ET and ROS in Salt Homeostasis and Salinity Stress Tolerance and Transgenic Approaches to Making Salt-Tolerant Crops 11.1 Introduction 11.1.1 Salt Homeostasis and Salt Stress Management 11.1.2 ROS Homeostasis and Salt Stress Management 11.1.3 ET and Salt Stress Management 11.2 Discussion References Chapter 12 Ethylene and Phytohormone Crosstalk in Plant Defense Against Abiotic Stress 12.1 Introduction 12.2 Ethylene Biosynthesis and Signaling Pathways 12.3 Role of Plant Hormones in Plant Stress Responses 12.4 Plant Hormones Crosstalk with Ethylene in Plant Defense against Abiotic Stress 12.5 Conclusion and Future Directions References Chapter 13 Mechanism for Ethylene Synthesis and Homeostasis in Plants: Current Updates 13.1 Introduction 13.2 Mechanism of Ethylene Hormone Biosynthesis 13.2.1 Salvage Pathway 13.3 Regulation of the Ethylene Synthesis Pathway 13.4 Ethylene Hormone Homeostasis: Current Updates 13.4.1 Ethylene in Root Development 13.4.2 Ethylene in Leaf Growth and Development 13.4.3 Leaf Senescence 13.4.4 Floral Development 13.4.5 Floral Senescence 13.4.6 Fruit Senescence 13.4.7 Fruit Ripening 13.4.8 Essential Elements 13.5 Ethylene’s Importance in Biotic and Abiotic Homeostasis 13.5.1 Salinity 13.6 ROS Scavenging Mechanisms Through Ethylene Regulation 13.7 ET Crosstalk 13.8 Conclusion References Chapter 14 Ethylene and Nitric Oxide Under Salt Stress: Exploring Regulatory Interactions 14.1 Introduction 14.2 Mediation of Salt Tolerance by Ethylene and Nitric Oxide 14.3 Regulatory Interactions Between Ethylene and NO for Salt Tolerance 14.3.1 Synthesis of Ethylene and NO and Points of Interaction 14.3.2 Antioxidants 14.3.3 Osmolytes 14.3.4 Nutrients 14.3.5 Glucose 14.3.6 Stomatal Regulation 14.3.7 Ion Homeostasis 14.4 Conclusions Acknowledgment References Chapter 15 Ethylene and Metabolic Reprogramming under Abiotic Stresses 15.1 Introduction 15.2 Abiotic Stresses Change Gene Expression Patterns 15.2.1 Ethylene in Stress Gene Expression Response 15.3 Ethylene’s Role in Various Abiotic Stresses 15.3.1 Ethylene Response to Flooding 15.3.2 Ethylene Response to Epinasty 15.3.3 Response of Ethylene to Drought Conditions 15.3.4 Response of Ethylene to Cold 15.3.5 Response of Ethylene to Salinity Stress 15.3.6 Response of Ethylene to Wounds 15.4 Conclusion References Chapter 16 Regulation of Thermotolerance Stress in Crops by Plant Growth-Promoting Rhizobacteria Through Ethylene Homeostasis 16.1 Introduction 16.2 Synthesis of Ethylene in Plant Roots and Rhizobial Inoculation 16.3 Basal and Acquired Thermotolerance 16.4 Hormone Involvement in Heat Stress 16.5 PGPR Influenced Ethylene Homeostasis 16.5.1 Biotic and Abiotic Stress Responses with ERFs and Redox Signaling 16.5.2 Ethylene Responses in ERFs 16.6 Conclusion Acknowledgments References Chapter 17 Ethylene: Signaling, Transgenics, and Applications in Crop Improvement 17.1 Introduction to Ethylene 17.2 Functions of Ethylene 17.3 Ethylene and Signal Transduction 17.4 Role of Ethylene Response Factors (ERFs) in Fruit Ripening 17.5 Ethylene Crosstalk During Ripening 17.6 Regulating Ethylene Signal Transduction for Agricultural and Horticultural Uses 17.6.1 Chemical Approach 17.7 Gene- and Genomics-Related Approach 17.8 Altering Ethylene Levels in Plants 17.9 Inhibition of Fruit Ripening 17.9.1 Antisense RNA Approach 17.9.2 Overexpression Approach 17.9.3 Genome Editing and Fruit Ripening 17.10 Conclusion References Chapter 18 Role of Ethylene in Combating Biotic Stress 18.1 Introduction 18.2 Biotic Stress in Plants 18.3 Ethylene Biosynthesis in Response to Stress 18.4 Role of Ethylene in Reducing ROS Accumulation under Biotic Stress 18.5 Role of Ethylene in Crop Yield under Biotic Stress 18.6 Conclusion References Chapter 19 Ethylene and Nitric Oxide Crosstalk in Plants under Abiotic Stress 19.1 Introduction 19.2 Ethylene (ET): A Key Regulatory Molecule in Plants 19.3 Crosstalk with Other Plant Hormones 19.4 Role of Nitric Oxide (NO) in Plants 19.5 NO Crosstalk with Plant Hormones 19.6 ET and NO Crosstalk under Abiotic Stress 19.6.1 ET-NO Crosstalk under Altered Temperature 19.6.2 ET-NO Crosstalk under Drought 19.6.3 ET-NO Crosstalk under Hypoxia 19.6.4 ET-NO Crosstalk under Altered Radiation 19.6.5 ET-NO Crosstalk under Salinity 19.6.6 ET-NO Crosstalk under Nutrient Deficiencies 19.6.7 ET-NO Crosstalk under Heavy Metal Stress 19.7 Conclusions and Future Perspectives References Chapter 20 Polyamine Metabolism and Ethylene Signaling in Plants 20.1 Introduction 20.2 PA Metabolism (Polyamine Biosynthesis and Polyamine Catabolism) 20.2.1 PA Biosynthesis 20.2.2 PA Catabolism 20.2.3 PA Distribution 20.3 ET Biosynthesis, Perception, and Signal Transduction 20.4 Molecular and Biochemical Aspects of ET Signaling References Index EULA