دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Manfred T. Reetz, Zhoutong Sun, Ge Qu سری: ISBN (شابک) : 3527350330, 9783527350339 ناشر: Wiley-VCH سال نشر: 2023 تعداد صفحات: 400 [402] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 Mb
در صورت تبدیل فایل کتاب Enzyme Engineering: Selective Catalysts for Applications in Biotechnology, Organic Chemistry, and Life Science به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مهندسی آنزیم: کاتالیزورهای انتخابی برای کاربرد در بیوتکنولوژی، شیمی آلی و علوم زیستی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
یک بحث معتبر و به روز در مورد مهندسی آنزیم و کاربردهای آن
در < span>مهندسی آنزیم: کاتالیزورهای انتخابی برای کاربردها در بیوتکنولوژی، شیمی آلی و علوم زیستی، تیمی از محققان برجسته، درمان قوی ای از مهندسی آنزیم و کاربردهای آن در زمینه های مختلف مانند بیوتکنولوژی، علوم زیستی ارائه می دهند. ، و سنتز. این کتاب با مقدمهای بر تکنیکهای مختلف مهندسی پروتئین آغاز میشود و موضوعاتی مانند روشهای جهشزایی ژن برای تکامل هدایتشده و طراحی منطقی آنزیم را پوشش میدهد. این شامل مطالعات موردی صنعتی مهندسی آنزیم با تمرکز بر انتخاب و فعالیت است.
نویسندگان همچنین در مورد حوزههای جدید و نوآورانه در این زمینه، شامل یادگیری ماشین و هوش مصنوعی بحث میکنند. چندین دیدگاه روشنگر در مورد آینده این کار ارائه می دهد.
خوانندگان همچنین خواهند یافت:
یک رساله بین رشتهای، مهندسی آنزیم: کاتالیزورهای انتخابی برای کاربردها در بیوتکنولوژی، شیمی آلی و علوم زیستی برای مهندسان پروتئین، نظریه پردازان، شیمیدانان آلی و دارویی و همچنین محققان فلزات واسطه در زمینه کاتالیزور و بیوتکنولوژیست مناسب است.
An authoritative and up-to-date discussion of enzyme engineering and its applications
In Enzyme Engineering: Selective Catalysts for Applications in Biotechnology, Organic Chemistry, and Life Science, a team of distinguished researchers deliver a robust treatment of enzyme engineering and its applications in various fields such as biotechnology, life science, and synthesis. The book begins with an introduction to different protein engineering techniques, covers topics like gene mutagenesis methods for directed evolution and rational enzyme design. It includes industrial case studies of enzyme engineering with a focus on selectivity and activity.
The authors also discuss new and innovative areas in the field, involving machine learning and artificial intelligence. It offers several insightful perspectives on the future of this work.
Readers will also find:
A transdisciplinary treatise, Enzyme Engineering: Selective Catalysts for Applications in Biotechnology, Organic Chemistry, and Life Science is perfect for protein engineers, theoreticians, organic, and pharmaceutical chemists as well as transition metal researchers in catalysis and biotechnologists.
Cover Title Page Copyright Contents Preface About the Authors Chapter 1 Introduction to Directed Evolution and Rational Design as Protein Engineering Techniques 1.1 Methods and Aims of Directed Enzyme Evolution 1.2 History of Directed Enzyme Evolution 1.3 Methods and Aims of Rational Design of Enzymes References Chapter 2 Screening and Selection Techniques 2.1 Introductory Remarks 2.2 Screening Methods 2.3 Selection Methods 2.4 Conclusions and Perspectives References Chapter 3 Gene Mutagenesis Methods in Directed Evolution and Rational Enzyme Design 3.1 Introductory Remarks 3.2 Directed Evolution Approaches 3.2.1 Mutator Strains 3.2.2 Error‐Prone Polymerase Chain Reaction (epPCR) 3.2.3 Whole Gene Insertion/Deletion Mutagenesis 3.2.4 Saturation Mutagenesis as a Privileged Method: Away from Blind Directed Evolution 3.2.5 DNA Shuffling and Related Recombinant Gene Mutagenesis Methods 3.2.6 Circular Mutation and Other Domain Swapping Techniques 3.2.7 Solid‐Phase Combinatorial Gene Synthesis as a PCR‐Independent Mutagenesis Method for Mutant Library Creation 3.2.7.1 Introductory Remarks 3.2.7.2 The Sloning Approach to Solid‐Phase Gene Synthesis of a Mutant Library: Comparison with the Respective Molecular Biological Saturation Mutagenesis Library 3.2.7.3 The Twist Approach to Solid‐Phase Gene Synthesis of a Mutant Library: Comparison with Molecular Biological Saturation Mutagenesis Library 3.2.8 Computational Tools and the Role of Machine Learning (ML) in Directed Evolution and Rational Enzyme Design 3.2.8.1 Introductory Remarks 3.2.8.2 Designing Mutant Libraries and Estimating Library Completeness 3.3 Diverse Approaches to Rational Enzyme Design 3.3.1 Introductory Remarks 3.4 Merging Semi‐rational Directed Evolution and Rational Enzyme Design by Focused Rational Iterative Site‐Specific Mutagenesis (FRISM) 3.5 Conclusions and Perspectives References Chapter 4 Guidelines for Applying Gene Mutagenesis Methods in Organic Chemistry, Pharmaceutical Applications, and Biotechnology 4.1 Some General Tips 4.1.1 Rational Design 4.1.2 Directed Evolution 4.2 Rare Cases of Comparative Directed Evolution Studies 4.2.1 Converting a Galactosidase into a Fucosidase 4.2.2 Enhancing and Inverting the Enantioselectivity of the Lipase from Pseudomonas aeruginosa (PAL) 4.3 Choosing the Best Strategy When Applying Saturation Mutagenesis 4.3.1 General Guidelines 4.3.2 Choosing Optimal Pathways in Iterative Saturation Mutagenesis (ISM) and Escaping from Local Minima in Fitness Landscapes 4.3.3 Systematization of Saturation Mutagenesis with Further Practical Tips 4.3.4 Single Code Saturation Mutagenesis (SCSM): Use of a Single Amino Acid as Building Block 4.3.5 Triple Code Saturation Mutagenesis (TCSM): A Viable Compromise When Choosing Optimal Reduced Amino Acid Alphabets in CAST/ISM 4.4 Techno‐economical Analysis of Saturation Mutagenesis Strategies 4.5 Generating Mutant Libraries by Combinatorial Solid‐Phase Gene Synthesis: The Future of Directed Evolution? 4.6 Fusing Directed Evolution and Rational Design: New Examples of Focused Rational Iterative Site‐Specific Mutagenesis (FRISM) References Chapter 5 Tables of Selected Examples of Directed Evolution and Rational Design of Enzymes with Emphasis on Stereo‐ and Regio‐selectivity, Substrate Scope and/or Activity 5.1 Introductory Explanations References Chapter 6 Protein Engineering of Enzyme Robustness Relevant to Organic and Pharmaceutical Chemistry and Applications in Biotechnology 6.1 Introductory Remarks 6.2 Rational Design of Enzyme Thermostability and Resistance to Hostile Organic Solvents 6.3 Ancestral and Consensus Approaches and Their Structure‐Guided Extensions 6.4 Further Computationally Guided Methods for Protein Thermostabilization 6.4.1 SCHEMA Approach 6.4.2 FRESCO Approach 6.4.3 FireProt Approach 6.4.4 Constrained Network Analysis (CNA) Approach 6.4.5 Alternative Approaches 6.5 Directed Evolution of Enzyme Thermostability and Resistance to Hostile Organic Solvents 6.6 Application of epPCR and DNA Shuffling 6.7 Saturation Mutagenesis in the B‐FIT Approach 6.8 Iterative Saturation Mutagenesis (ISM) at Protein–Protein Interfacial Sites for Multimeric Enzymes 6.9 Conclusions and Perspectives References Chapter 7 Artificial Enzymes as Promiscuous Catalysts in Organic and Pharmaceutical Chemistry 7.1 Introductory Background Information 7.2 Applying Protein Engineering for Tuning the Catalytic Profile of Promiscuous Enzymes 7.3 Applying Protein Engineering to P450 Monooxygenases for Manipulating Activity and Stereoselectivity of Promiscuous Transformations 7.4 Conclusions and Perspectives References Chapter 8 Learning Lessons from Protein Engineering 8.1 Introductory Remarks 8.2 Additive Versus Nonadditive Mutational Effects in Fitness Landscapes Revealed by Partial or Complete Deconvolution 8.3 Unexplored Chiral Fleeting Intermediates and Their Role in Protein Engineering 8.4 Case Studies Featuring Mechanistic, Structural, and/or Computational Analyses of the Source of Evolved Stereo‐ and/or Regioselectivity 8.4.1 Esterase 8.4.2 Epoxide Hydrolase 8.4.3 Ene‐reductase of the Old Yellow Enzyme (OYE) 8.4.4 Cytochrome P450 Monooxygenase 8.4.5 Analysis of Baeyer–Villiger Monooxygenase with Consideration of Fleeting Chiral Intermediates 8.5 Conclusions and Suggestions for Further Theoretical Work References Chapter 9 Perspectives for Future Work 9.1 Introductory Remarks 9.2 Extending Applications in Organic and Pharmaceutical Chemistry 9.3 Extending Applications in Biotechnology 9.4 Patent Issues 9.5 Final Comments References INDEX EULA