ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Environmental Pollution and Remediation

دانلود کتاب آلودگی محیط زیست و اصلاح

Environmental Pollution and Remediation

مشخصات کتاب

Environmental Pollution and Remediation

ویرایش: 1 
نویسندگان:   
سری: Environmental and Microbial Biotechnology 4 
ISBN (شابک) : 9811554986, 9789811554988 
ناشر: Springer 
سال نشر: 2021 
تعداد صفحات: 501 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 10 مگابایت 

قیمت کتاب (تومان) : 55,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 13


در صورت تبدیل فایل کتاب Environmental Pollution and Remediation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب آلودگی محیط زیست و اصلاح نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب آلودگی محیط زیست و اصلاح



این کتاب پیشرفته ترین فرآیندهای اصلاح محیطی را ارائه می دهد. حفاظت و مدیریت محیط زیست یک نگرانی جهانی به ویژه در زمینه مناطق صنعتی است. در طول سال‌ها، چندین روش متداول و مهندسی بی‌عیب‌زدایی فیزیکوشیمیایی در اصلاح سایت‌های آلوده استفاده شده است. با این حال، این روش ها گران هستند و کارایی محدودی دارند. این کتاب با تکیه بر تحقیقات و نمونه‌هایی از سراسر جهان، مروری جامع و بینش‌هایی در مورد فناوری‌های سبز و جایگزین‌های اصلاح پایدار ارائه می‌دهد. این مقاله اهمیت نوظهور نانوتکنولوژی، شیمی و حسگرهای زیستی، گونه‌های شاخص، اصلاح ترکیبات آلی مبتنی بر میکروب، و روش‌های اصلاح خارج از محل را مورد بحث قرار می‌دهد. با توجه به نیاز روزافزون جهانی به یک مرور کلی از اصلاح زیست محیطی سایت های آلوده، این امر برای معلمان، محققان، دانشمندان، ظرفیت سازان و سیاست گذاران جذاب خواهد بود. همچنین به عنوان مطالب خواندنی اضافی برای دانشجویان کارشناسی و کارشناسی ارشد بیوتکنولوژی و علوم محیطی عمل می کند.


توضیحاتی درمورد کتاب به خارجی

This book presents state-of-the-art environmental remediation processes. Environmental protection and management is a global concern, especially in the context of industrial regions. Over the years, several conventional, engineering-based physicochemical decontamination methods have used in the remediation of polluted sites. However, these methods are expensive and have limited efficiency. Drawing on research and examples from around the world, this book offers a comprehensive review of and insights into green technologies and sustainable remediation alternatives. It discusses the emerging importance of nanotechnology, chemo and biosensors, indicator species, microbe-based remediation of organic compounds, and ex-situ remediation methods. Addressing the growing global need for a holistic overview of the environmental remediation of polluted sites, it will appeal to teachers, researchers, scientists, capacity builders, and policymakers. It also serves as additional reading material for undergraduate and graduate students of biotechnology and environmental sciences.



فهرست مطالب

Contents
Editor and Contributors
1: Nanotechnology in Agriculture, the Food Sector, and Remediation: Prospects, Relations, and Constraints
	1.1 Introduction
	1.2 What Is Nanotechnology?
	1.3 Nanotechnology in Agriculture and the Food Industry
	1.4 Nanoremediation
	1.5 Ecotoxicity of Nanomaterials
	1.6 Conclusion
	References
2: Nanotechnology-Based Treatment Systems for Arsenic Sequestration in Groundwater: Contamination, Challenges and Future Scope...
	2.1 Introduction
	2.2 Arsenic Pollution in Groundwater and Its Health Consequences
	2.3 Sources of Arsenic in Subsurface Environment
		2.3.1 Causes of Its Release in Aquifer Systems
			2.3.1.1 Reductive Dissolution
			2.3.1.2 Alkali Desorption
			2.3.1.3 Geothermal Trigger
	2.4 Conventional Treatment Methods and Their Limitations
		2.4.1 Coagulation/Flocculation
		2.4.2 Ion-Exchange Resins
		2.4.3 Oxidation and Adsorption
		2.4.4 Membrane Processes
	2.5 Adoption of Technology at Rural Scale
		2.5.1 Domestic or Household Treatment Systems
		2.5.2 Community-Based Treatment Systems
	2.6 Scope of Nanotechnology-Based Treatment Systems
	2.7 Nanoadsorbents for Arsenic Remediation
		2.7.1 Iron-Based Nanomaterials
		2.7.2 Ti-, Al-, Zr-, Ce-, Zn- and Cu-Based Nanomaterials
	2.8 Scope of Future Nanoadsorbent Development
	2.9 Subsurface Sequestration of Arsenic
		2.9.1 Technology Advantages
		2.9.2 Methods of Treatment
			2.9.2.1 Permeable Reactive Barriers (PRBs)
			2.9.2.2 In Situ Chemical Treatment
			2.9.2.3 Concern Associated to Technology
			2.9.2.4 Scope for Future Studies
	2.10 Lack of Studies at Laboratory Scale
		2.10.1 Studies Representing Real-World Conditions
		2.10.2 Cost Evaluation of Nanomaterials Production
		2.10.3 Fabrication of Columns
	2.11 Conclusions
	References
3: Development of Polyhydroxyalkanoate (PHA) and Its Copolymers as a Possible ``Cure´´ for the Plastic Pollution
	3.1 Introduction: Polyhydroxyalkanoate (PHA) as a Possible Substitute for Petroleum-Based Plastics (PBP)
	3.2 Biosynthesis of PHA
		3.2.1 PHA Synthase
		3.2.2 Potential Carbon Sources for PHA Biosynthesis
		3.2.3 Metabolic Pathways for PHA Biosynthesis
			3.2.3.1 Naturally Occurring PHA Biosynthetic Pathways
			3.2.3.2 Genetically Engineered Pathways for PHA Biosynthesis
	3.3 Material Properties of PHA
	3.4 Remarks and Outlook
	References
4: Advanced Technologies for Ecological Reconstruction and Bioremediation of Degraded Land
	4.1 Introduction
	4.2 Natural Bioresources Involved in Bioremediation
		4.2.1 Enzymatic Soil Activity
		4.2.2 The Importance of Soil Microorganisms for Biological Depollution
		4.2.3 Nature of Microorganisms in the Soil
		4.2.4 Types of Microorganisms From Soil
		4.2.5 The Distribution of Microorganisms in the Soil
		4.2.6 Factors that Determine the Distribution of Microorganisms in the Soil
	4.3 Monitoring Soil Pollution
		4.3.1 Soil Characteristics
		4.3.2 Soil Components
			4.3.2.1 Inorganic Soil Substance
			4.3.2.2 The Organic Substance From Soil: Biomolecules
			4.3.2.3 Soil Water
			4.3.2.4 Soil Atmosphere
	4.4 Soil Degradation
		4.4.1 The Erosion
		4.4.2 Compaction of Soil
		4.4.3 Acidification of Soil
		4.4.4 Heavy Metals in the Soil
		4.4.5 The Bioremediation
			4.4.5.1 Advantages of Bioremediation
	4.5 Technologies Involved in Bioremediation
		4.5.1 Biorestoration
		4.5.2 Bioremediation with Microbial Communities
		4.5.3 The Importance of Microorganisms with Depollution Potential and High Bioremediation Potential
		4.5.4 The Role of Microorganisms in Fixing or Mobilizing Metals in the Soil
		4.5.5 In Situ Bioremediation of Soils Contaminated with Heavy Metals
	4.6 The Role of Plants in Bioremediation
		4.6.1 The Importance of Phytoremediation of Soils Contaminated with Heavy Metals
	4.7 Biomonitoring Soil Pollution with Heavy Metals
	4.8 Bioindicators for Terrestrial Environments
	4.9 Research on the Possibilities of Using Plants and Microorganisms for the Biological Extraction of Heavy Metals From Contam...
		4.9.1 Removing Heavy Metals From Polluted and Leached Soils Contaminated with the Help of Cyanobacteria
	4.10 Ecological Restoration
		4.10.1 Biological Recultivation of Degraded Lands
			4.10.1.1 Treatments in Ecological Reconstruction Technologies of Degraded or Industrially Polluted Sites
		4.10.2 Plants Used in Recultivation of Degraded Lands
			4.10.2.1 Works to Improve the Conditions for the Installation and Development of Forest Vegetation
	4.11 Biological Reclamation of the Mining Waste Deposits From the Exploitation of Nonferrous and Precious Metal Ores
		4.11.1 Chemical and Physical Treatments
		4.11.2 Models of Ecological Rehabilitation and Recultivation of Polluted and Degraded Soils From Technical Waste Dumps from Ir...
	4.12 Technogenic Soils from Residues from Lead and Zinc Mines
	4.13 Conclusions and Recommendations
	References
5: The Recent Strategies Employed in Chemical Analysis of Contaminated Waters, Sediments and Soils as a Part of the Remediatio...
	5.1 Introduction
	5.2 The Role of Extraction in Environmental Analysis
	5.3 The Types of Extraction Techniques
		5.3.1 Liquid-Liquid Extraction
		5.3.2 Solid-Liquid Extraction
	5.4 Surfactants of Biological Origin as Eco-friendly Extractants for Environmental Pollutants Removal
		5.4.1 Rhamnolipids
		5.4.2 Sophorolipids
		5.4.3 Lipopeptides
		5.4.4 Saponins
			5.4.4.1 Quillaja Saponins
	5.5 Experimental: A Solid-Liquid Extraction with Synthetic and Biological Surfactants for the Removal of Cu, Pb, Ni and Zn fro...
	5.6 Conclusions
	References
6: Fluoride Remediation Using Membrane Processes
	6.1 Introduction
	6.2 Source of Fluoride in Atmosphere
	6.3 Effects of Fluoride on Life Forms
	6.4 Available Technologies for Removing Fluoride
		6.4.1 Adsorption
		6.4.2 Membrane Process
			6.4.2.1 Organic Membrane
			6.4.2.2 Inorganic Membrane
			6.4.2.3 Hybrid Membrane
	6.5 Membrane-Based Techniques for Fluoride Removal
	6.6 Conclusion
	References
7: A Two-Stage Constructed Wetland Design Integrating Artificial Aeration and Sludge Mineralization for Municipal Wastewater T...
	7.1 Introduction
	7.2 Description of the Constructed Wetland Facility
	7.3 Results and Discussion
	7.4 Conclusions
	References
8: Persistent Organic Pollutants (POPs): Sources, Types, Impacts, and Their Remediation
	8.1 Introduction: Persistent Organic Pollutants (POPs)
	8.2 Sources of POPs
		8.2.1 Intentionally Produced POPs
		8.2.2 Non-intentionally Produced POPs
	8.3 Environmental Impacts of POPs
	8.4 Health Impacts of POPs
	8.5 Types of Persistent Organic Pollutants
		8.5.1 Polychlorinated Naphthalenes (PCNs)
		8.5.2 Polybrominated Diphenyl Ethers (PBDEs)
		8.5.3 Polycyclic Aromatic Hydrocarbons (PAHs)
		8.5.4 Dechlorane Plus
		8.5.5 Polychlorinated Biphenyls (PCBs)
		8.5.6 Organochlorine Pesticides (OCPs)
	8.6 Remediation of Persistent Organic Pollutants
		8.6.1 Bioremediation
			8.6.1.1 In Situ Bioremediation
			8.6.1.2 Ex Situ Bioremediation
			8.6.1.3 Removal of Persistent Organic Pollutants
		8.6.2 Adsorption Process
		8.6.3 Membrane Technology
			8.6.3.1 Reverse Osmosis
			8.6.3.2 Microfiltration (MF)
			8.6.3.3 Ultrafiltration (UF)
			8.6.3.4 Nanofiltration (NF)
		8.6.4 Advanced Oxidation Processes (AOPs)
			8.6.4.1 Chemical-Based AOPs
			8.6.4.2 UV-Based AOPs
			8.6.4.3 Sonochemical AOPs
			8.6.4.4 Electrochemical AOPs
	8.7 Conclusion
	References
9: Emerging Microfiber Pollution and Its Remediation
	9.1 Introduction
	9.2 Sources of Microfiber Pollution
	9.3 Possible Pathways of Microfiber Entry into the Environment
	9.4 Microfiber Pollution and Its Hazardous Effects
	9.5 Recent Remediation Strategies
	9.6 Conclusion
	References
10: Environment Remediation Tools: Chemosensors and Biosensors
	10.1 Introduction
	10.2 Chemosensors
		10.2.1 Fluorescence-Based Chemosensors
		10.2.2 Electrochemical Chemosensors
		10.2.3 Colorimetric Chemosensors
		10.2.4 Surface Plasmon Resonance (SPR) Chemosensor
			10.2.4.1 SPR Integrated Optical Fiber Approach
	10.3 Biosensors
		10.3.1 Fluorescent Label-Based Biosensor
			10.3.1.1 Fiber Optic-Based Biosensors
		10.3.2 Surface Plasmon Resonance Biosensors
			10.3.2.1 Integrated Surface Plasmon Resonance Biosensors
		10.3.3 Piezoelectric Biosensors
			10.3.3.1 Piezoelectric Quartz Crystal Biosensors
			10.3.3.2 Piezoelectric Cantilever Biosensors
		10.3.4 Electrochemical Biosensors
			10.3.4.1 Amperometric/Voltammetric Biosensors
			10.3.4.2 Impedimetric/Conductometric Biosensors
		10.3.5 Biochemical Biosensors
			10.3.5.1 Immunosensors
	10.4 Conclusion and Future Prospects
	References
11: Adsorptive Chromatography: A Sustainable Strategy for Treatment of Food and Pharmaceutical Industrial Effluents
	11.1 Introduction
		11.1.1 Challenges for Effluent Treatment of Food and Pharmaceuticals Industries
	11.2 Techniques for Effluent Treatment from Food and Pharmaceutical Industries
		11.2.1 Horizontal Subsurface Flow Constructed Wetland (HSFCW)
		11.2.2 Upflow Anaerobic Sludge Blanket Reactor (UASB)
		11.2.3 Membrane Bioreactors (MB)
		11.2.4 Trickling Filter (TF)
		11.2.5 Bubble Column Reactors (BCRs)
		11.2.6 Airlift Reactors (ALRs)
		11.2.7 Fluidized Bed Reactors (FBRs)
		11.2.8 Packed Bed Bioreactors (PBRs)
		11.2.9 Adsorptive Chromatography (AC)
	11.3 Modes of Adsorptive Chromatography for Treatment of Effluents and Discharge
	11.4 Dovetailing of Unit Operations for Sustainable Technique
	11.5 Conclusions and Future Prospects
	References
12: Remediation of Heavy Metals Through Genetically Engineered Microorganism
	12.1 Introduction
	12.2 Heavy Metals
		12.2.1 Traditional Methods for Treating Environments Contaminated by Heavy Metals
	12.3 Microbial Diversity and Bioremediation
	12.4 Utilization of the Natural Biodiversity
		12.4.1 Microbial Remediation of Heavy Metals Polluted Soils
	12.5 Unique Mechanisms in Bacteria: Natural Development of Resistance Towards Toxic Elements
		12.5.1 Microorganisms as Biosorbents of Heavy Metals
		12.5.2 Biosorbent Material
		12.5.3 The Choice of Metal for Biosorption Process
		12.5.4 Biosorption Mechanisms
			12.5.4.1 Transport Across Cell Membranes
			12.5.4.2 Ion Exchange
			12.5.4.3 Complexation
			12.5.4.4 Precipitation
			12.5.4.5 Physical Adsorption
			12.5.4.6 Siderophores
			12.5.4.7 Biosurfactants
			12.5.4.8 Oxidation-Reduction (Redox)
			12.5.4.9 Biomethylation
			12.5.4.10 Metal-Binding Cysteine-Rich Peptides
				Metallothioneins (MTs)
				Glutathione (GSH)
				Natural Phytochelatins (PCs) and Synthetic Phytochelatin (EC20)
			12.5.4.11 The ``Cell-Ssurface Display´´ System
	12.6 Factors Affecting Biosorption
	12.7 Diversity of Metal-Resistant Genes and Biotechniques in Metal-Resistant Bacteria for Bioremediation
		12.7.1 Chromium
		12.7.2 Copper
		12.7.3 Lead
		12.7.4 Mercury
		12.7.5 Nickel
	12.8 Discovery of Novel Metal-Resistant Genes Involved in Bioremediation
	12.9 Genetically Engineered Microorganisms
	12.10 Manipulation of Bacterial Genetic System for Enhanced Bioremediation
		12.10.1 Engineering Single Gene or Gene Cluster/Operon
		12.10.2 Modification of Intrinsic Genes
		12.10.3 Pathway Switching
	12.11 Biodegradation of Heavy Metals
	12.12 Risk Mitigation in Genetically Modified Bacteria
		12.12.1 Monitoring of Recombinant Strains
		12.12.2 Horizontal Transfer of Recombinant Genes to Other Microorganisms
		12.12.3 Use of Defective Transposons
		12.12.4 Removal of Antibiotic Resistance Genes
		12.12.5 Suicide Mechanisms Preventing Escape of Recombinant Bacteria
		12.12.6 Suicide Mechanisms Preventing Horizontal Gene Transfer
	12.13 Future Directions
	References
13: Heavy Metal Removal Processes by Sulfate-Reducing Bacteria
	13.1 Introduction
	13.2 Heavy Metal Removal
	13.3 Main Mechanisms of Biological Removal
		13.3.1 Biosorption and Bioaccumulation
		13.3.2 Precipitation
		13.3.3 Microbial Reduction of Metallic Ions
	13.4 Sulfate-Reducing Bacteria
		13.4.1 Classification and Phylogeny
		13.4.2 Biotechnological Implications
	13.5 Removing of Heavy Metal by Desulfovibrio
		13.5.1 Desulfovibrio alaskensis as a Model of Removing of Metals
	References
14: Biological Implications of Dioxins/Furans Bioaccumulation in Ecosystems
	14.1 Introduction
	14.2 Nature of Dioxins and Furans
	14.3 Sources and Exposure of Dioxins/Furans
		14.3.1 Incineration
		14.3.2 Combustion
		14.3.3 Industrial
		14.3.4 Reservoir
	14.4 Dioxins/Furans in the Global Environment
		14.4.1 Dioxin and Furan Contamination in Soil
		14.4.2 Dioxin and Furan Contamination in Water
		14.4.3 Dioxin and Furan Contamination in the Air
	14.5 Regulations
	14.6 Bioaccumulation of Dioxins/Furans
		14.6.1 Terrestrial Ecosystem
		14.6.2 Aquatic Ecosystem
	14.7 Health Effects in Humans
		14.7.1 Cancer
		14.7.2 Respiratory Disorders
		14.7.3 Cardiovascular Disorders
		14.7.4 Neurological Disorders
		14.7.5 Reproductive Disorders
	14.8 Future Considerations and Conclusions
		14.8.1 Better Understanding and Identification of Sources
		14.8.2 Understanding the Mechanism of Action
		14.8.3 Development of New Techniques to Identify Contamination
		14.8.4 Development of Toxicological and Epidemiological Studies
	References
15: The Role of Microorganisms in Remediation of Environmental Contaminants
	15.1 Introduction
	15.2 Conventional Methods of Remediation
		15.2.1 Mechanical Separation
		15.2.2 Extraction and Storage
		15.2.3 Soil Cover/Insulation
		15.2.4 Adsorption
		15.2.5 Membrane Filtration
		15.2.6 Electrochemical Method
	15.3 Bioremediation as a Sustainable Method for Remediation of Contaminants
		15.3.1 In Situ Bioremediation
		15.3.2 Ex Situ Bioremediation
	15.4 Microbes Involved in Bioremediation
		15.4.1 Bacteria
		15.4.2 Fungi
		15.4.3 Protozoa and Algae
	15.5 Microbial Enzymes Involved in Bioremediation
	15.6 Molecular and Omnics Approaches Used for the Modification of Microbes to Increase Bioremediation
		15.6.1 Molecular Biology Tools in Advancement of Bioremediation of Pollutants
			15.6.1.1 16S rRNA Technique and Bioremediation
		15.6.2 Omnics-Based Advancements in Bioremediation of Pollutants
			15.6.2.1 Metagenomics, Metatranscriptomics, Proteomics and Bioremediation
			15.6.2.2 Metabolomics and Bioremediation
	15.7 Conclusion
	References
16: Causes, Effects and Sustainable Approaches to Remediate Contaminated Soil
	16.1 Introduction
		16.1.1 Point-Source Pollution
		16.1.2 Diffuse-Source Pollution
	16.2 Sources of Soil Pollution
		16.2.1 Natural Sources
		16.2.2 Anthropogenic Sources
			16.2.2.1 Domestic and Municipal Wastes
			16.2.2.2 Transportation and Urban Infrastructure
			16.2.2.3 Industrial and Mining Wastes
			16.2.2.4 Agriculture
			16.2.2.5 Miscellaneous Sources
	16.3 Major Pollutants in Soil
		16.3.1 Inorganic Pollutants
		16.3.2 Organic Pollutants
	16.4 Factors Affecting Toxicity of Organic and Inorganic Pollutants in Soil
		16.4.1 Soil Texture and Mineralogy
		16.4.2 The pH and Electrical Conductivity
			16.4.2.1 Changes in Surface Charge
			16.4.2.2 Competition for Adsorption Sites
			16.4.2.3 Hydrolysis of Inorganic/Organic Species in Solution
			16.4.2.4 Dissolution of Inorganic/Organic Complexing Anions
		16.4.3 Soil Organic Matter
		16.4.4 Cation Exchange Capacity
		16.4.5 Oxidation-Reduction Potential
	16.5 Effects on Environment and Socioeconomic Segment
		16.5.1 Effects on Soil
		16.5.2 Harmful Effects of Pollutants on Plants
			16.5.2.1 Changes in Plant Community Structure Pattern: Case Studies
			16.5.2.2 Crop Loss Due to Soil Pollution
		16.5.3 Effects on Animals and Human Beings
	16.6 Advanced Technologies and Cost Incurred in Management of Wastes
		16.6.1 Conventional and Advanced Management Techniques
		16.6.2 Bioremediation of Contaminated Sites
			16.6.2.1 In Situ Bioremediation
			16.6.2.2 Ex Situ Bioremediation
			16.6.2.3 Bioremediation Using Microbes, Plants and Their Association
	16.7 Future Prospects
	16.8 Conclusions
	References




نظرات کاربران