دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [3 ed.]
نویسندگان: Walter Reineke. Michael Schlömann
سری:
ISBN (شابک) : 3662665468, 9783662665466
ناشر: Springer Spektrum
سال نشر: 2023
تعداد صفحات: 610
[611]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 28 Mb
در صورت تبدیل فایل کتاب Environmental Microbiology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب میکروبیولوژی محیطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی به مشکلات زیست محیطی جهانی و محلی و دخالت میکروارگانیسم ها در توسعه و اصلاح آنها می پردازد. به طور خاص، جنبه های روش شناختی، برخی از آنها ژنتیک مولکولی، برای مطالعه جوامع میکروبی در نظر گرفته شده است. به طور کلی، نقش برجسته میکروارگانیسم ها در چرخه های مواد مختلف ارائه شده است. علاوه بر اصول بیوشیمیایی برای تخریب آلاینده های محیطی، استفاده از میکروارگانیسم ها در فرآیندهای بیوتکنولوژیکی محیطی برای تصفیه هوا، آب یا خاک و همچنین در فرآیندهای تولید سازگار با محیط زیست مورد بحث قرار گرفته است. این کتاب برای زیست شناسانی که علاقه مند به مسائل میکروبیولوژیکی محیطی هستند، اما همچنین برای دانشجویان مهندسی فرآیند یا محیط زیست، ژئواکولوژی یا زمین شناسی و همچنین دانشجویان سایر رشته های علوم محیطی در نظر گرفته شده است. برای ویرایش سوم، نویسندگان کتاب را به طور کامل اصلاح، تصحیح، به روز و تکمیل کرده اند.
This textbook addresses global and local environmental problems and the involvement of microorganisms in their development and remediation. In particular, methodological aspects, some of them molecular genetic, for the study of microbial communities are considered. Overall, the prominent role of microorganisms in various material cycles is presented. In addition to biochemical principles for the degradation of environmental pollutants, the use of microorganisms in environmental biotechnological processes for the purification of air, water or soil as well as in environmentally friendly production processes is discussed. The book is intended for biologists with an interest in environmental microbiological issues, but also for students of process or environmental engineering, geoecology or geology, as well as students of other environmental science disciplines. For the 3rd edition, the authors have completely revised, corrected, updated and supplemented the book.
Preface to the Third Edition Preface to the Second Edition Preface to the First Edition Spellings and Abbreviations Contents 1: Global Environment: Climate and Microorganisms 1.1 Climate System 1.1.1 Components of the Climate System 1.1.2 Interactions Between the Components 1.1.3 Energy Balance of the Earth 1.1.4 Climate Change and Its Effects 1.1.5 Which Substances Have Which Effect on the Climate? 1.1.6 Projections 1.2 Global Cycles with Reservoirs and Material Flows 1.2.1 Global Carbon Cycle 1.2.2 Global Nitrogen Cycle 1.2.3 Global Sulfur Cycle 1.2.4 Global Phosphorus Cycle 1.2.5 Summary of Global Cycles References Further Reading 2: Microorganisms, Actors in the Environment 2.1 Microorganisms, Assignment to Groups 2.2 Microorganisms, the Advantage of Small Size 2.3 Microorganisms, Small But Numerous 2.4 Microorganisms, Do Not Live Alone References Further Reading 3: Relationship Between Microbial Energy Production and Material Cycles 3.1 Principles of Energy Production 3.1.1 Respiratory Chains and ATP Synthase 3.2 Main Types of Microbial Metabolism 3.2.1 Phototrophy 3.2.2 Chemotrophy 3.2.2.1 Chemotrophy: Electron Donor 3.2.2.2 Chemotrophy: Electron Acceptor 3.2.3 Carbon Source: Heterotrophy and Autotrophy Further Reading 4: Carbon Cycle 4.1 Formation of the Earth’s Atmosphere and Fossil Raw Materials 4.2 Material Flows in the Carbon Cycle 4.3 Autotrophic CO2-Fixation 4.3.1 Calvin Cycle 4.3.2 Reductive Citrate Cycle 4.3.3 Reductive Acetyl-CoA Pathway (Acetogenesis) 4.3.4 CO2-Fixation Cycle in Crenarchaeota 4.3.4.1 Dicarboxylate/4-Hydroxybutyrate Cycle 4.3.4.2 3-Hydroxypropionate/4-Hydroxybutyrate Cycle 4.3.5 3-Hydroxypropionate Bi-cycle 4.3.6 Comparison of the CO2-Fixation Processes 4.4 Degradation of Natural Substances 4.4.1 Degradation of Carbohydrates 4.4.1.1 Glycolysis 4.4.1.2 Oxidative Pyruvate Decarboxylation and Tricarboxylic Acid Cycle 4.4.1.3 Balance of Aerobic Respiration and Energy Storage 4.4.1.4 Anaerobic Degradation of Carbohydrates 4.4.2 Degradation of Proteins 4.4.3 Degradation of Fats 4.4.4 Degradation of Plant Substances/Lignin and Other Natural Substances/Humus Formation 4.4.4.1 Degradation of Starch 4.4.4.2 Degradation of Cellulose 4.4.4.3 Degradation of Xylan (Hemicellulose) 4.4.4.4 Degradation of Pectin 4.4.4.5 Degradation of Lignin 4.4.4.6 Humification 4.5 Methane Cycle/Methanogenic Food Chain/Methanotrophy 4.5.1 Methane Formation 4.5.2 Methane Degradation 4.5.2.1 Aerobic Degradation (Methylotrophy) 4.5.2.2 Anaerobic Degradation of Methane References Further Reading 5: Environmental Chemicals 5.1 Chemicals in the Environment: Distribution and Concentration 5.1.1 Transport Processes 5.1.1.1 Transport in the Water Body 5.1.1.2 Atmospheric Transport 5.1.2 Transfer Processes Between Environmental Media or Compartments 5.1.2.1 Volatilisation: Transport from Water and Soil to Air 5.1.2.2 Adsorption on Solids: Distribution Between Water and Particles 5.1.2.3 Distribution Between Water and Biota: n-Octanol/Water Partition Coefficient 5.1.3 Transformation Processes 5.1.3.1 Abiotic Transformations 5.1.3.2 Biotic Transformations 5.2 Assessment of Chemicals: General Principles and Concepts 5.2.1 Degradability Tests 5.2.1.1 Methods for Tracking Substance Turnover 5.2.1.2 OECD Testing Strategy 5.2.1.3 Simulation Tests 5.2.1.3.1 Tests for “Possible Degradability” 5.2.1.3.2 Screening Tests for Anaerobic Degradability 5.2.2 Toxicity and Mutagenicity Testing with Microbial Systems 5.2.2.1 Toxicity Tests for Aquatic Ecosystems 5.2.2.1.1 Algae Test 5.2.2.1.2 Pseudomonas putida Growth Inhibition Test 5.2.2.1.3 Luminescent Bacteria Test 5.2.2.1.4 Nitrification Inhibition Test 5.2.3 Mutagenicity Testing with Bacterial Systems 5.2.3.1 Ames Test (OECD 471, DIN 38415-4) 5.2.3.2 Umu Test (DIN 38415-3) References Further Reading 6: Microbial Degradation of Pollutants 6.1 Degradation of Hydrocarbons 6.1.1 Petroleum: Composition and Properties 6.1.2 The Process of Oiling in the Sea 6.1.3 Degradation of Alkanes, Alkenes and Cyclic Alkanes 6.1.3.1 Alkanes/Alkenes 6.1.3.2 Cycloalkanes 6.1.4 Degradation of Monoaromatic Hydrocarbons 6.1.4.1 Aerobic Aromatics Degradation 6.1.4.2 Anaerobic Aromatics Degradation 6.1.4.2.1 Formation of the Central Key Intermediates 6.1.4.2.1.1 Formation of Benzoyl-CoA 6.1.4.2.1.2 Formation of 1,3-Diphenols 6.1.4.2.2 Dearomatisation Reactions 6.1.4.2.2.1 Degradation of Benzoyl-CoA 6.1.4.2.2.2 Degradation of Resorcinol, Phloroglucin and Hydroxyhydroquinone 6.1.4.2.2.3 Hypothesis: Anaerobic Degradation of Naked Aromatic Compounds 6.1.4.3 Strategies of an Unorthodox Aerobic Degradation of Aromatics 6.1.4.3.1 Hybrid Pathway for Benzoate 6.1.4.3.2 Hybrid Pathway for Phenylacetate 6.1.4.3.3 Are the Hybrid Degradation Pathways Significant? 6.1.5 Degradation and Humification of Polynuclear Hydrocarbons 6.1.5.1 Bacterial Aerobic Degradation of PAHs 6.1.5.2 Degradation of PAHs by Fungi 6.1.5.3 Bacterial Anaerobic Degradation of PAHs 6.1.6 Degradation of Heterocycles 6.1.6.1 Sulfur-Containing Heterocycles 6.1.6.2 Nitrogen-Containing Heterocycles 6.1.6.3 Oxygenated Heterocycles 6.1.7 Formation of Biosurfactants/Absorption of Mineral Oil Hydrocarbons 6.1.7.1 Surface-Active Substances (Biosurfactants) 6.1.7.1.1 Structure of Biosurfactants 6.1.7.2 Sequence of Colonisation of an Oil Droplet 6.1.7.3 Use of Biosurfactants 6.2 Degradation of Chlorinated Pollutants 6.2.1 Degradation of Chlorinated Aromatics 6.2.1.1 Chlorinated Aromatics as an Environmental Problem 6.2.1.1.1 Production and Use 6.2.1.1.2 Physico-Chemical Properties and Evidence 6.2.1.2 Possibilities of Microbial Degradation of Chlorinated Aromatics 6.2.1.2.1 Cometabolic Degradation 6.2.1.2.1.1 Cometabolic Conversions by Aerobic Bacteria After Growth on Aromatics 6.2.1.2.1.2 Cometabolic Degradation by Ligninolytic Fungi 6.2.1.2.1.3 Cometabolic Dechlorination by Anaerobic Bacterial Populations 6.2.1.2.2 Chlorinated Aromatic Compounds Beneficial to Microorganisms 6.2.1.2.2.1 Dehalorespiration, an Anaerobic Respiration 6.2.1.2.2.2 Chloroaromatics as Carbon and Energy Source of Aerobic Bacteria 6.2.2 Degradation of Hexachlorocyclohexane 6.2.3 Degradation of Triazines 6.2.4 Degradation of Chloroaliphatic Compounds 6.2.4.1 Environmental Problem Using the Example of Volatile Halogenated Organic Compounds 6.2.4.2 Possibilities of Microbial Degradation of Chloroaliphatic Compounds 6.2.4.2.1 Aerobic Growth with Chloroaliphates 6.2.4.2.2 Cometabolic Degradation 6.2.4.2.3 Chloroaliphates Beneficial to Anaerobic Microorganisms 6.2.5 Organohalogens from Nature/Natural Sources 6.3 Degradation and Humification of Nitroaromatics 6.3.1 Environmental Problem Caused by Nitroaromatics 6.3.2 Possibility of Microbial Degradation of Nitroaromatics 6.3.3 Elimination of Trinitrotoluene by Sequestration on Soil 6.4 Degradation of Aromatic Sulfonic Acids and Azo Dyes 6.4.1 Aromatic Sulfonic Acids 6.4.1.1 Use and Environmental Relevance 6.4.1.2 Degradation of Aromatic Sulfonic Acids 6.4.2 Degradation of Azo Dyes 6.5 Plastics, Bioplastics 6.5.1 Degradability of Plastics 6.5.2 Bioplastics 6.5.2.1 Biopol: A Degradable Thermoplastic Resin 6.5.2.2 Degradable Plastics: Not Only from Renewable Raw Materials 6.5.3 An Assessment of the Environmental Impact of Plastics and Bioplastics 6.6 Complexing Agents: Aminopolycarboxylic Acids 6.7 Endocrine Active Compounds 6.7.1 Tributyltin Compounds 6.7.2 Alkylphenols 6.7.3 Bisphenol A 6.8 Methyl Tert-Butyl Ether 6.9 Glyphosate References Further Reading 7: The Microbial Nitrogen Cycle 7.1 Nitrogen Fixation 7.2 Ammonification 7.3 Nitrification 7.4 ANAMMOX 7.5 Nitrate Reduction 7.5.1 Denitrification 7.5.2 Dissimilatory Nitrate Reduction to Ammonium References Further Reading 8: Cycles of Sulfur, Iron and Manganese 8.1 Sulfur Cycle 8.1.1 Sulfate Reduction 8.1.2 Reduction of Elemental Sulfur 8.1.3 Sulfur Disproportionation 8.1.4 Oxidation of Sulfide and Elemental Sulfur 8.1.5 Organic Sulfur Compounds 8.2 The Iron Cycle 8.2.1 Oxidation of Divalent Iron 8.2.1.1 Oxidative Leaching of Pyrite and Other Sulfides at Low pH 8.2.2 Reduction of Trivalent Iron 8.3 The Manganese Cycle 8.3.1 Oxidation of Divalent Manganese 8.3.2 Reduction of Tetravalent Manganese (Mn4+): Anaerobic Respiration References Further Reading 9: Heavy Metals and Other Toxic Inorganic Ions 9.1 Toxicity 9.2 Environmental Quality Standards 9.3 Natural and Anthropogenic Occurrences 9.4 Resistance of Microorganisms 9.5 Mercury 9.6 Arsenic 9.6.1 Arsenite Oxidation 9.6.2 Arsenate Reduction 9.6.3 Arsenate Methylation 9.7 Selenium 9.8 Uranium References Further Reading 10: Microorganisms at Different Sites: Living Conditions and Adaptation Strategies 10.1 Microbial Competition and Cooperation 10.1.1 Growth Rates and Nutrient Concentrations 10.1.2 Adaptation 10.1.2.1 Adaptation to the Presence of High Salt Concentration 10.1.2.2 Adaptation to the Presence of Solvents 10.1.3 Mixed Substrates 10.1.4 Limit Concentrations 10.1.5 Microbial Cooperation 10.2 Attachment to Surfaces and Biofilms 10.2.1 Surfaces 10.2.2 Biofilms 10.3 Soil as Microbial Habitat 10.4 Aquatic Biotopes 10.4.1 Freshwater Environment 10.4.1.1 The Free Water 10.4.1.2 The Sediment 10.4.2 Marine Environments 10.4.2.1 Coastal and Intertidal Areas 10.4.2.2 The Pelagic Zone 10.4.2.2.1 Epipelagic Zone/Euphotic Zone 10.4.2.2.2 The Deep Sea 10.4.2.2.2.1 Meso- and Bathypelagic Zones 10.4.2.2.2.2 Oxygen Minimum Zones and Oxic-Anoxic Interfaces 10.4.2.2.2.3 Hydrothermal Vents of the Deep Sea 10.4.2.2.2.4 Cold Gas Leaks/Cold Seeps 10.4.2.2.2.5 Sediment 10.4.2.2.2.6 Mountain Sides References Further Reading 11: Microbial Communities: Structural and Functional Analyses with Classical Approach 11.1 Summary Methods 11.1.1 Determination of Bacterial Counts and Biomasses 11.1.2 Determination of Activities 11.2 Detection of Certain Microorganisms 11.3 Microorganisms, from Nature to the Laboratory, the Isolation of Pure Cultures 11.3.1 Organisms That Cannot Be Cultivated? 11.3.2 Isolation and Problems 11.3.3 Enrichment System 11.3.4 Analogue Enrichment: Sense or Nonsense? 11.3.5 Inoculum for Enrichment Culture References Further Reading 12: Microbial Communities: Structural and Functional Analyses with Molecular Biological Approach 12.1 Basic Molecular Genetic Methods for Classification and Identification of Pure Cultures 12.2 Molecular Genetic Methods for Community Characterization 12.3 Metagenomics 12.3.1 Community of an Acid Mine Drainage System 12.3.2 Community of the Sargasso Sea 12.3.3 The Global Ocean Sampling Expedition 12.3.4 Sequence Data and Functionality: A Critical View References Further Reading 13: Damage to Inorganic Materials Due to Microbial Activities, Biocorrosion 13.1 Iron Corrosion 13.2 Concrete Corrosion 13.3 Building Corrosion/Damage to Stone Reference Further Reading 14: Biological Waste Water Treatment 14.1 Formation and Composition of Waste Water 14.2 Waste Water Treatment in Mechanical-Biological Treatment Plants with Aerobic Stage 14.3 Biological Phosphate Elimination 14.4 Nitrogen Elimination During Waste Water Treatment 14.5 Anaerobic Sludge Treatment, Direct Anaerobic Wastewater Treatment and Biogas Production 14.6 Treatment of Industrial Waste Water 14.7 Near-Natural Wastewater Treatment Processes References Further Reading 15: Biological Exhaust Air Treatment 15.1 Problems with Exhaust Air Flows 15.2 Microbial Exhaust Air Purification, General Principles 15.3 Exhaust Air Purification Systems: Biofilter 15.4 Exhaust Air Purification Systems: Bioscrubbers 15.5 Exhaust Air Purification Systems: Trickling Filter Scrubbers 15.6 Exhaust Air Purification Systems: Membrane Reactors 15.7 Selection Criteria for Procedure Selection References Further Reading Technical Rules 16: Biological Soil Remediation 16.1 Contaminated Site Issues 16.2 Methods of Biological Soil Remediation 16.2.1 Ex Situ Procedure 16.2.1.1 Rental Technique 16.2.1.2 Landfarming 16.2.1.3 Reactor Process 16.2.2 In Situ Soil Remediation 16.2.2.1 Phytoremediation 16.2.2.2 Infiltration Method (“Pump and Treat” Technology) 16.2.2.3 Aeration Process Further Reading 17: Biological Waste Treatment 17.1 Waste Issues 17.2 Biological Waste Treatment Processes 17.2.1 The Composting Process 17.2.2 Composting Processes 17.2.3 Anaerobic Waste Treatment by Digestion References Further Reading 18: Biotechnology and Environmental Protection 18.1 Biological Pest Control 18.1.1 Bioinsecticides 18.1.1.1 Bacillus thuringiensis and B. sphaericus 18.1.1.2 Bioinsecticides from Actinomycetes 18.1.1.3 Mushroom Preparations 18.1.1.4 Virus Preparations 18.1.2 Biofungicides and Herbicides 18.2 Design of New Chemicals 18.2.1 Structure-Activity Relationship/Predictability of Degradation 18.2.2 Degradable Alternatives to Current Chemicals 18.3 Product-Integrated Environmental Protection Through Biotechnology 18.3.1 Process Comparison: Biotechnical and Chemical-Technical Processes 18.3.1.1 Biotechnological and Chemical-Technical Production of Vitamin B2 18.3.1.2 Biotechnological and Chemical-Technical Production of Leather 18.3.2 Environmental Relief Effects Through Product Substitution 18.3.2.1 Product Comparison: Enzyme Use in Heavy-Duty Detergents 18.3.3 Summary PIUS 18.4 Biofuels 18.4.1 Bioethanol 18.4.2 Biodiesel 18.4.3 Biomass-to-Liquid Fuel 18.5 Electricity from Microorganisms 18.5.1 Hydrogen Production in Bioreactors for Conventional Fuel Cells 18.5.2 Microbial Production of Fuel in the Anode Compartment of the Fuel Cell 18.5.3 Direct Electron Transport from the Cell to the Electrode 18.5.4 Mediators for Electron Transport References Further Reading 19: Food for Thought 19.1 Sustainability, the Concept 19.2 Sustainability, Environmental Microbiology a Contribution 19.3 Environment and Environmental Microbiology, Reflection References Further Reading