ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Environmental Concerns and Remediation: Proceedings of F-EIR Conference 2021

دانلود کتاب نگرانی های زیست محیطی و اصلاح: مجموعه مقالات کنفرانس F-EIR 2021

Environmental Concerns and Remediation: Proceedings of F-EIR Conference 2021

مشخصات کتاب

Environmental Concerns and Remediation: Proceedings of F-EIR Conference 2021

دسته بندی: هواشناسی ، اقلیم شناسی
ویرایش:  
نویسندگان:   
سری:  
ISBN (شابک) : 3031059832, 9783031059834 
ناشر: Springer 
سال نشر: 2022 
تعداد صفحات: 288 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 11 مگابایت 

قیمت کتاب (تومان) : 43,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 3


در صورت تبدیل فایل کتاب Environmental Concerns and Remediation: Proceedings of F-EIR Conference 2021 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب نگرانی های زیست محیطی و اصلاح: مجموعه مقالات کنفرانس F-EIR 2021 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب نگرانی های زیست محیطی و اصلاح: مجموعه مقالات کنفرانس F-EIR 2021

این کتاب مجموعه مقالات کنفرانس F-EIR 2021، نگرانی های محیطی و اصلاح آن را که در چاندیگر، هند، 18 تا 22 اکتبر 2021 برگزار شد، ارائه می دهد. هدف از کنفرانس و جلد آن ارائه ایده های جدید در طیف وسیعی از رشته ها است. در علوم محیطی با تمرکز بر رویکردهای نظری و عملی تولید پاک با هدف جلوگیری از تولید زباله و در عین حال افزایش بهره وری در استفاده از انرژی، آب و منابع تجدیدپذیر. این کتاب با مشارکت کارشناسان برجسته مجهز به اطلاعات و فناوری پیشرفته، موضوعات پایداری و انعطاف‌پذیری، مهندسی شیمی و محیط زیست، علم مواد، بیوتکنولوژی، میکروارگانیسم‌های مرتبط با سلامت و فناوری‌های سبز را پوشش می‌دهد. این کتاب مورد توجه دانشمندان، متخصصان مهندسی، معماران، دانشمندان محیط زیست، دانشگاهیان، اقتصاددانان و دانشجویانی که در این رشته‌ها مشغول هستند، خواهد بود.


توضیحاتی درمورد کتاب به خارجی

This book presents the conference proceedings of the F-EIR Conference 2021, Environment Concerns and its Remediation held in Chandigarh, India, October 18–22, 2021. The purpose of the conference and the volume is to present new ideas across a range of disciplines in environmental science, with a focus on theoretical and practical approaches to clean production aimed at preventing the production of waste, while increasing efficiencies in the uses of energy, water, and renewable resources. With contributions from leading experts equipped with state-of-the-art information and technology, the book covers topics of sustainability and resilience, chemical and environmental engineering, materials science, biotechnology, health-related microorganisms, and green technologies. The book will be of interest to scientists, engineering professionals, architects, environmental scientists, academicians, economists, and students engaged in these disciplines.



فهرست مطالب

Preface
Contents
Chapter 1: UHMWPE/OPA Composite Coatings on Ti6Al4V Alloy as Protective Barriers in a Biological-Like Medium
	1.1 Introduction
	1.2 Materials
	1.3 Experimental Methods
		1.3.1 Surface Preparation
		1.3.2 Synthesis of UHMWPE Coatings
		1.3.3 Synthesis of Octadecylphosphonic Acid Coatings/UHMWPE-OPA Coatings
		1.3.4 Structural Characterization
		1.3.5 Electrochemical Characterization
	1.4 Results and Discussion
		1.4.1 Structural Characterization
		1.4.2 Electrochemical Measurements
	1.5 Conclusions
	References
Chapter 2: Multifunctional Behavior of TiO2 Cementitious Composites for Photocatalyst Air Cleaning and Energy Saving
	2.1 Introduction
	2.2 Materials and Methods
		2.2.1 Materials
		2.2.2 Mixture Design and Sample Preparation
		2.2.3 Methods
	2.3 Results and Discussion
		2.3.1 Photocatalytic Activity
	2.4 Conclusions
	References
Chapter 3: Co-Utilization of Slag By-products from Steel Industries in Sustainable Concrete
	3.1 Introduction
	3.2 Experimental Details
		3.2.1 Binder Materials
		3.2.2 Coarse and Fine Aggregates
		3.2.3 Mixture Proportion and Specimen Preparation
		3.2.4 Test Methods
	3.3 Results and Discussion
		3.3.1 Workability
		3.3.2 Density and Compressive Strength
		3.3.3 Water Absorption and Surface Resistivity
		3.3.4 Mass Change
	3.4 Conclusion
	References
Chapter 4: MPCM-based Porous Cementitious Composites for Enhanced Energy Efficiency of Smart Buildings
	4.1 Introduction
	4.2 Materials and Methods
		4.2.1 Materials
		4.2.2 Methods
	4.3 Thermal Experimental Results
	4.4 Mechanical Experimental Results
	4.5 SEM Analysis
	4.6 Conclusions
	References
Chapter 5: Usage of Ground Granulated Blast Furnace Slag on Mechanical and Absorption Properties of Concrete
	5.1 Introduction
	5.2 Experimental Programs
		5.2.1 Materials and Methods
		5.2.2 Mix Proportions and Identifications
	5.3 Results and Discussion
		5.3.1 Properties of Fresh Concrete
		5.3.2 Hardened Concrete Properties
			5.3.2.1 Compressive Strength
			5.3.2.2 Split Tensile Strength
			5.3.2.3 Flexural Strength
	5.4 Durability Properties
		5.4.1 Water Absorption Test
		5.4.2 Sorptivity Test
	5.5 Conclusions
	References
Chapter 6: Study on Self-Compacting Concrete Using Marble Powder with Silpozz
	6.1 Introduction
	6.2 Experimental Study
		6.2.1 Material Used and Properties
	6.3 Experimental Results and Discussions
		6.3.1 Compressive Strength
		6.3.2 Splitting Tensile Strength
		6.3.3 Flexural Strength
	6.4 Conclusion
	References
Chapter 7: Contribution of Waste Paper Sludge on the Mechanical and Durability Attributes of Concrete: A Review
	7.1 Introduction
	7.2 Physical and Chemical Properties of WPSA
		7.2.1 Physical Properties of WPSA
		7.2.2 Chemical Composition
	7.3 Generation and Environmental Significance of WPS
		7.3.1 Concentrations of Heavy Metals
	7.4 Characterization of WPS and Its Effects on Concrete
		7.4.1 Characterization of the Waste Paper Sludge
		7.4.2 Influence of WPSA on the Properties of Cement Blended Paste and Concrete
	7.5 Conclusions
	References
Chapter 8: Investigating the Effect of Corn Cob Ash on the Characteristics of Cement Paste and Concrete: A Review
	8.1 Introduction
	8.2 Properties of Corn Cob Ash
		8.2.1 Chemical Composition
		8.2.2 Physical Properties
	8.3 Effect of Corn Cob Ash on the Mechanical and Durability Attributes of Concrete
		8.3.1 Initial and Final Setting Time
		8.3.2 Soundness
		8.3.3 Hydration of Cement Paste with CCA
		8.3.4 Workability
		8.3.5 Compressive Strength
		8.3.6 Tensile Strength
		8.3.7 Density
		8.3.8 Water Absorption
		8.3.9 Permeability
		8.3.10 Chemical Attack
		8.3.11 Sulfate Resistance
	8.4 Conclusion and Recommendations
	References
Chapter 9: Influence of Copper Slag on the Mechanical Properties of Concrete: A Review
	9.1 Introduction
	9.2 Physical and Chemical Properties of Copper Slag
		9.2.1 Physical Properties
		9.2.2 Chemical Properties of Copper Slag
	9.3 Problems Associated with Copper Slag
	9.4 Effect of Copper Slag on Concrete
		9.4.1 Workability
		9.4.2 Compressive Strength
		9.4.3 Split Tensile Strength
		9.4.4 Flexural Strength
	9.5 Conclusions
	References
Chapter 10: Experimental Study on Fly Ash and Ground Granulated Blast Slag-Based Geopolymer Corbels
	10.1 Introduction
	10.2 Research Significance
	10.3 Experimental Programme
		10.3.1 Materials Used
		10.3.2 Mix Proportions
		10.3.3 Mixing, Casting, Compacting and Curing of Double Corbel Samples
		10.3.4 Testing of Double Corbel Samples
	10.4 Results and Discussion
		10.4.1 Failure Pattern of Unreinforced and Reinforced Samples
		10.4.2 Comparison of Experimental Shear Capacity with Theoretical Capacity
	10.5 Conclusions
	References
Chapter 11: Environmental Remediation for Cementitious Systems Using Titania Nanocomposites
	11.1 Introduction
		11.1.1 Market Share of Construction Steel Usage in Different Countries
		11.1.2 Photochemistry Principles of Self-Healing
		11.1.3 Approach Towards Environmental Remediation and Sustainability
	11.2 Materials and Methods
		11.2.1 Dissipation of Nano Titania (NT)
		11.2.2 Sample Preparation for Optimized Cement Composites
		11.2.3 Sample Preparation for MgCl2/MgSO4 Aqueous Solution
		11.2.4 Sample Preparation for Cement Concrete Composites
	11.3 Test Results
	11.4 Discussion of Results
	11.5 Conclusions
	References
Chapter 12: Restoring Urban Green Cover of Chennai City: An Ecological Approach
	12.1 Introduction
	12.2 Need for Ecological Framework for Green Cover Improvement
	12.3 Study Area
	12.4 Restoring Urban Green Cover
		12.4.1 Assessing the City’s Environmental Performance
			12.4.1.1 Changes in the Per Capita Air Purification Service
			12.4.1.2 Changes in the Per Capita Surface Heat Radiation
			12.4.1.3 Changes in the Per Capita Urban Hydrological Process
		12.4.2 Identifying Scenarios of Chennai City
		12.4.3 Environmental Scenario
	12.5 Developing Spatial Strategies
		12.5.1 Plot-Level Strategies
		12.5.2 Street-Level Strategies
		12.5.3 Neighbourhood-Level Strategies
		12.5.4 Regional-Level Strategies
	12.6 Landscape Planning for Urban Green Cover
		12.6.1 City-Level Green Cover Plan
		12.6.2 Neighbourhood- or Ward-Level Green Cover Plan
		12.6.3 Street-Level Green Cover Plan
		12.6.4 Plot-Level Plan
		12.6.5 Urban Green Cover Restoration Plan for Chennai City
	12.7 Summary and Conclusion
	References
Chapter 13: Cities and Their Role in Promoting Sustainability
	13.1 Introduction
		13.1.1 Concept of Sustainability
		13.1.2 Sustainability and SDG 11
		13.1.3 Cities and Their Role in Sustainability
	13.2 Prospects of Cities
		13.2.1 Economic and Social Prospects of Cities
		13.2.2 Economic Development Leading to Social Distress
		13.2.3 Environmental Prospects of Cities
		13.2.4 Vulnerability to Hazards in Urban Areas
	13.3 Challenges Toward Future Urban Development
		13.3.1 Urbanization Trends
		13.3.2 Urban Infrastructure and Municipal Finance
	13.4 Interventions for Sustainable Development of Cities
		13.4.1 Government Schemes Targeted Toward Urban Development
		13.4.2 Administrative Interventions and Good Governance
		13.4.3 Proper Urban Planning for Cities
		13.4.4 Improvement of Infrastructure for Better Quality of Life of City Dwellers
		13.4.5 Environmental-Friendly Approach to Mitigate Ecological Concerns
		13.4.6 Compact City Approach to Restrict Urban Sprawling and Greenfield Development
	13.5 Conclusion
	References
Chapter 14: Predicting Landslide Susceptibility of a Mountainous Region Using a Hybrid Machine Learning-Based Model
	14.1 Introduction
	14.2 Study Area
	14.3 Materials and Methods
		14.3.1 Landslide Causative Factors (LCFs)
		14.3.2 Bivariate Frequency Ratio (FR) Model
		14.3.3 Support Vector Machine (SVM) Model
	14.4 Result and Discussion
		14.4.1 Test for Multicollinearity
		14.4.2 LSM Using FR Model
		14.4.3 LSM Using SVM Model
		14.4.4 LSM Using FR-SVM Model
	14.5 Discussion
	14.6 Conclusion
	References
Chapter 15: Planning Strategies to Improve Deteriorating Living Environment of Hill Towns: A Case of Dharamshala
	15.1 Introduction
	15.2 Dharamshala—The Case Study
		15.2.1 Demography
		15.2.2 Location (Fig. 15.1)
	15.3 Issues in Dharamshala Harming the Environment
	15.4 Planning Interventions
	15.5 Conclusion
	References
Chapter 16: Volatile Organic Compounds: The Concealed Depreciator of Indoor Air Quality
	16.1 Introduction
	16.2 Sources of Indoor Air Pollution
	16.3 Volatile Organic Compounds (VOCs)
		16.3.1 Formaldehyde
			16.3.1.1 Sources
			16.3.1.2 Health Effects
		16.3.2 Benzene
			16.3.2.1 Sources
			16.3.2.2 Health Effects
		16.3.3 Toluene
			16.3.3.1 Sources
			16.3.3.2 Health Effects
		16.3.4 Xylene
			16.3.4.1 Sources
			16.3.4.2 Health Effects
		16.3.5 Styrene
			16.3.5.1 Sources
			16.3.5.2 Health Effects
		16.3.6 Naphthalene
			16.3.6.1 Sources
			16.3.6.2 Health Effects
	16.4 Control of Indoor VOC Exposure
	16.5 Volatile Organic Compounds and Indoor Air Quality
	16.6 Strategies for Improving Indoor Air Quality
	16.7 Conclusion
	References
Chapter 17: High Levels of Nitrate in Well Waters of Saipem Ward, Candolim, Goa
	17.1 Introduction
	17.2 Materials and Methods
		17.2.1 Selection and Collection of Water Samples
		17.2.2 Multiple-Tube Fermentation Technique
		17.2.3 Dissolved Oxygen (DO) Levels and Biological Oxygen Demand (BOD) of Water Samples
		17.2.4 Chemical Oxygen Demand (COD)
		17.2.5 Total Dissolved Solids (TDS)
		17.2.6 Total Suspended Solids (TSS)
		17.2.7 Isolation of Xenobiotic-Degrading Bacteria by Selective Enrichment
		17.2.8 Estimation of Total Phosphorus
		17.2.9 IMViC Tests
		17.2.10 Nitrate Estimation Using Cadmium Reduction Method
		17.2.11 Microbial Nitrate Reduction Test
		17.2.12 UV Spectrometric Analysis for Total Organic Carbon and Nitrate
	17.3 Results and Discussion
		17.3.1 High Coliform Load in Well Waters
		17.3.2 DO, BOD, COD, TDS and TSS of Well Water Samples
		17.3.3 Isolation and Characterization of Xenobiotic-Degrading Bacteria
		17.3.4 Phosphorus and Nitrate in Well Water Samples
		17.3.5 Ultraviolet Spectrometric Analysis of TOC and Nitrates
	17.4 Conclusion
	References
Chapter 18: Fuel Cell Technology: The Future Ahead
	18.1 Introduction
		18.1.1 Basic Needs of Fuel Cells
	18.2 The Theory Behind Fuel Cells
		18.2.1 Electrochemical Reactions
			18.2.1.1 Advantages of a Fuel Cell
			18.2.1.2 Disadvantages of a Fuel Cell
		18.2.2 Major Components of a Fuel Cell
			18.2.2.1 Electrolyte in Fuel Cell
			18.2.2.2 Cathode in Fuel Cell
			18.2.2.3 Anode in Fuel Cell
	18.3 Principle of Working
		18.3.1 Step 1: Reactant Delivery
		18.3.2 Step 2: Electrochemical Reactions
		18.3.3 Step 3: Ionic and Electronic Conduction
		18.3.4 Step 4: Product Removal
	18.4 Power Generation and Performance of a Fuel Cell
	18.5 Losses in Fuel Cells
		18.5.1 Fuel Crossover and Internal Current Losses
		18.5.2 Activation Losses
		18.5.3 Ohmic Losses
		18.5.4 Mass Transport Losses
	18.6 Fuel Cell Efficiency
		18.6.1 Ideal/Reversible Fuel Cell Efficiency
		18.6.2 Real/Practical Fuel Cell Efficiency
	18.7 Types of Fuel Cells
		18.7.1 Low Temperature Fuel Cells
			18.7.1.1 Polymer Electrolyte Membrane Fuel Cells (PEMFCs)
			18.7.1.2 Alkaline Fuel Cells (AFCs)
			18.7.1.3 Phosphoric Acid Fuel Cells (PAFCs)
		18.7.2 High-Temperature Fuel Cells
			18.7.2.1 Molten Carbonate Fuel Cells (MCFCs)
			18.7.2.2 Solid Oxide Fuel Cells (SOFCs)
	18.8 Applications of Fuel Cells
		18.8.1 Power Production
		18.8.2 Cogeneration
		18.8.3 Automobiles
		18.8.4 Submarines
	18.9 Conclusion
	References
Index




نظرات کاربران