دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Hagai Meirovitch
سری:
ISBN (شابک) : 9780367406929, 9780367854782
ناشر:
سال نشر: 2020
تعداد صفحات: 397
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 11 مگابایت
در صورت تبدیل فایل کتاب Entropy and Free Energy in Structural Biology: From Thermodynamics to Statistical Mechanics to Computer Simulation Book به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کتاب آنتروپی و انرژی آزاد در زیست شناسی ساختاری: از ترمودینامیک تا مکانیک آماری تا شبیه سازی کامپیوتری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Series Page Title Page Copyright Page Dedication Table of Contents Preface Acknowledgments Author Section I: Probability Theory 1: Probability and Its Applications 1.1 Introduction 1.2 Experimental Probability 1.3 The Sample Space Is Related to the Experiment 1.4 Elementary Probability Space 1.5 Basic Combinatorics 1.5.1 Permutations 1.5.2 Combinations 1.6 Product Probability Spaces 1.6.1 The Binomial Distribution 1.6.2 Poisson Theorem 1.7 Dependent and Independent Events 1.7.1 Bayes Formula 1.8 Discrete Probability—Summary 1.9 One-Dimensional Discrete Random Variables 1.9.1 The Cumulative Distribution Function 1.9.2 The Random Variable of the Poisson Distribution 1.10 Continuous Random Variables 1.10.1 The Normal Random Variable 1.10.2 The Uniform Random Variable 1.11 The Expectation Value 1.11.1 Examples 1.12 The Variance 1.12.1 The Variance of the Poisson Distribution 1.12.2 The Variance of the Normal Distribution 1.13 Independent and Uncorrelated Random Variables 1.13.1 Correlation 1.14 The Arithmetic Average 1.15 The Central Limit Theorem 1.16 Sampling 1.17 Stochastic Processes—Markov Chains 1.17.1 The Stationary Probabilities 1.18 The Ergodic Theorem 1.19 Autocorrelation Functions 1.19.1 Stationary Stochastic Processes Homework for Students A Comment about Notations References Section II: Equilibrium Thermodynamics and Statistical Mechanics 2: Classical Thermodynamics 2.1 Introduction 2.2 Macroscopic Mechanical Systems versus Thermodynamic Systems 2.3 Equilibrium and Reversible Transformations 2.4 Ideal Gas Mechanical Work and Reversibility 2.5 The First Law of Thermodynamics 2.6 Joule’s Experiment 2.7 Entropy 2.8 The Second Law of Thermodynamics 2.8.1 Maximal Entropy in an Isolated System 2.8.2 Spontaneous Expansion of an Ideal Gas and Probability 2.8.3 Reversible and Irreversible Processes Including Work 2.9 The Third Law of Thermodynamics 2.10 Thermodynamic Potentials 2.10.1 The Gibbs Relation 2.10.2 The Entropy as the Main Potential 2.10.3 The Enthalpy 2.10.4 The Helmholtz Free Energy 2.10.5 The Gibbs Free Energy 2.10.6 The Free Energy, , H.(T,µ) 2.11 Maximal Work in Isothermal and Isobaric Transformations 2.12 Euler’s Theorem and Additional Relations for the Free Energies 2.12.1 Gibbs-Duhem Equation 2.13 Summary Homework for Students References Further Reading 3: From Thermodynamics to Statistical Mechanics 3.1 Phase Space as a Probability Space 3.2 Derivation of the Boltzmann Probability 3.3 Statistical Mechanics Averages 3.3.1 The Average Energy 3.3.2 The Average Entropy 3.3.3 The Helmholtz Free Energy 3.4 Various Approaches for Calculating Thermodynamic Parameters 3.4.1 Thermodynamic Approach 3.4.2 Probabilistic Approach 3.5 The Helmholtz Free Energy of a Simple Fluid Reference Further Reading 4: Ideal Gas and the Harmonic Oscillator 4.1 From a Free Particle in a Box to an Ideal Gas 4.2 Properties of an Ideal Gas by the Thermodynamic Approach 4.3 The chemical potential of an Ideal Gas 4.4 Treating an Ideal Gas by the Probability Approach 4.5 The Macroscopic Harmonic Oscillator 4.6 The Microscopic Oscillator 4.6.1 Partition Function and Thermodynamic Properties 4.7 The Quantum Mechanical Oscillator 4.8 Entropy and Information in Statistical Mechanics 4.9 The Configurational Partition Function Homework for Students References Further Reading 5: Fluctuations and the Most Probable Energy 5.1 The Variances of the Energy and the Free Energy 5.2 The Most Contributing Energy E* 5.3 Solving Problems in Statistical Mechanics 5.3.1 The Thermodynamic Approach 5.3.2 The Probabilistic Approach 5.3.3 Calculating the Most Probable Energy Term 5.3.4 The Change of Energy and Entropy with Temperature References 6: Various Ensembles 6.1 The Microcanonical (petit) Ensemble 6.2 The Canonical (NVT) Ensemble 6.3 The Gibbs (NpT) Ensemble 6.4 The Grand Canonical (µVT) Ensemble 6.5 Averages and Variances in Different Ensembles 6.5.1 A Canonical Ensemble Solution (Maximal Term Method) 6.5.2 A Grand-Canonical Ensemble Solution 6.5.3 Fluctuations in Different Ensembles References Further Reading 7: Phase Transitions 7.1 Finite Systems versus the Thermodynamic Limit 7.2 First-Order Phase Transitions 7.3 Second-Order Phase Transitions References 8: Ideal Polymer Chains 8.1 Models of Macromolecules 8.2 Statistical Mechanics of an Ideal Chain 8.2.1 Partition Function and Thermodynamic Averages 8.3 Entropic Forces in an One-Dimensional Ideal Chain 8.4 The Radius of Gyration 8.5 The Critical Exponent ν 8.6 Distribution of the End-to-End Distance 8.6.1 Entropic Forces Derived from the Gaussian Distribution 8.7 The Distribution of the End-to-End Distance Obtained from the Central Limit Theorem 8.8 Ideal Chains and the Random Walk 8.9 Ideal Chain as a Model of Reality References 9: Chains with Excluded Volume 9.1 The Shape Exponent ν for Self-avoiding Walks 9.2 The Partition Function 9.3 Polymer Chain as a Critical System 9.4 Distribution of the End-to-End Distance 9.5 The Effect of Solvent and Temperature on the Chain Size 9.5.1 θ Chains in d = 3 9.5.2 θ Chains in d = 2 9.5.3 The Crossover Behavior Around 9.5.4 The Blob Picture 9.6 Summary References Section III: Topics in Non-Equilibrium Thermodynamics and Statistical Mechanics 10: Basic Simulation Techniques: Metropolis Monte Carlo and Molecular Dynamics 10.1 Introduction 10.2 Sampling the Energy and Entropy and New Notations 10.3 More About Importance Sampling 10.4 The Metropolis Monte Carlo Method 10.4.1 Symmetric and Asymmetric MC Procedures 10.4.2 A Grand-Canonical MC Procedure 10.5 Efficiency of Metropolis MC 10.6 Molecular Dynamics in the Microcanonical Ensemble 10.7 MD Simulations in the Canonical Ensemble 10.8 Dynamic MD Calculations 10.9 Efficiency of MD 10.9.1 Periodic Boundary Conditions and Ewald Sums 10.9.2 A Comment About MD Simulations and Entropy References 11: Non-Equilibrium Thermodynamics—Onsager Theory 11.1 Introduction 11.2 The Local-Equilibrium Hypothesis 11.3 Entropy Production Due to Heat Flow in a Closed System 11.4 Entropy Production in an Isolated System 11.5 Extra Hypothesis: A Linear Relation Between Rates and Affinities 11.5.1 Entropy of an Ideal Linear Chain Close to Equilibrium 11.6 Fourier’s Law—A Continuum Example of Linearity 11.7 Statistical Mechanics Picture of Irreversibility 11.8 Time Reversal, Microscopic Reversibility, and the Principle of Detailed Balance 11.9 Onsager’s Reciprocal Relations 11.10 Applications 11.11 Steady States and the Principle of Minimum Entropy Production 11.12 Summary References 12: Non-equilibrium Statistical Mechanics 12.1 Fick’s Laws for Diffusion 12.1.1 First Fick’s Law 12.1.2 Calculation of the Flux from Thermodynamic Considerations 12.1.3 The Continuity Equation 12.1.4 Second Fick’s Law—The Diffusion Equation 12.1.5 Diffusion of Particles Through a Membrane 12.1.6 Self-Diffusion 12.2 Brownian Motion: Einstein’s Derivation of the Diffusion Equation 12.3 Langevin Equation 12.3.1 The Average Velocity and the Fluctuation-Dissipation Theorem 12.3.2 Correlation Functions 12.3.3 The Displacement of a Langevin Particle 12.3.4 The Probability Distributions of the Velocity and the Displacement 12.3.5 Langevin Equation with a Charge in an Electric Field 12.3.6 Langevin Equation with an External Force—The Strong Damping Velocity 12.4 Stochastic Dynamics Simulations 12.4.1 Generating Numbers from a Gaussian Distribution by CLT 12.4.2 Stochastic Dynamics versus Molecular Dynamics 12.5 The Fokker-Planck Equation 12.6 Smoluchowski Equation 12.7 The Fokker-Planck Equation for a Full Langevin Equation with a Force 12.8 Summary of Pairs of Equations References 13: The Master Equation 13.1 Master Equation in a Microcanonical System 13.2 Master Equation in the Canonical Ensemble 13.3 An Example from Magnetic Resonance 13.3.1 Relaxation Processes Under Various Conditions 13.3.2 Steady State and the Rate of Entropy Production 13.4 The Principle of Minimum Entropy Production—Statistical Mechanics Example References Section IV: Advanced Simulation Methods: Polymers and Biological Macromolecules 14: Growth Simulation Methods for Polymers 14.1 Simple Sampling of Ideal Chains 14.2 Simple Sampling of SAWs 14.3 The Enrichment Method 14.4 The Rosenbluth and Rosenbluth Method 14.5 The Scanning Method 14.5.1 The Complete Scanning Method 14.5.2 The Partial Scanning Method 14.5.3 Treating SAWs with Finite Interactions 14.5.4 A Lower Bound for the Entropy 14.5.5 A Mean-Field Parameter 14.5.6 Eliminating the Bias by Schmidt’s Procedure 14.5.7 Correlations in the Accepted Sample 14.5.8 Criteria for Efficiency 14.5.9 Locating Transition Temperatures 14.5.10 The Scanning Method versus Other Techniques 14.5.11 The Stochastic Double Scanning Method 14.5.12 Future Scanning by Monte Carlo 14.5.13 The Scanning Method for the Ising Model and Bulk Systems 14.6 The Dimerization Method References 15: The Pivot Algorithm and Hybrid Techniques 15.1 The Pivot Algorithm—Historical Notes 15.2 Ergodicity and Efficiency 15.3 Applicability 15.4 Hybrid and Grand-Canonical Simulation Methods 15.5 Concluding Remarks References 16: Models of Proteins 16.1 Biological Macromolecules versus Polymers 16.2 Definition of a Protein Chain 16.3 The Force Field of a Protein 16.4 Implicit Solvation Models 16.5 A Protein in an Explicit Solvent 16.6 Potential Energy Surface of a Protein 16.7 The Problem of Protein Folding 16.8 Methods for a Conformational Search 16.8.1 Local Minimization—The Steepest Descents Method 16.8.2 Monte Carlo Minimization 16.8.3 Simulated Annealing 16.9 Monte Carlo and Molecular Dynamics Applied to Proteins 16.10 Microstates and Intermediate Flexibility 16.10.1 On the Practical Definition of a Microstate References 17: Calculation of the Entropy and the Free Energy by Thermodynamic Integration 17.1 “Calorimetric” Thermodynamic Integration 17.2 The Free Energy Perturbation Formula 17.3 The Thermodynamic Integration Formula of Kirkwood 17.4 Applications 17.4.1 Absolute Entropy of a SAW Integrated from an Ideal Chain Reference State 17.4.2 Harmonic Reference State of a Peptide 17.5 Thermodynamic Cycles 17.5.1 Other Cycles 17.5.2 Problems of TI and FEP Applied to Proteins References 18: Direct Calculation of the Absolute Entropy and Free Energy 18.1 Absolute Free Energy from18.2 The Harmonic Approximation 18.3 The M2 Method 18.4 The Quasi-Harmonic Approximation 18.5 The Mutual Information Expansion 18.6 The Nearest Neighbor Technique 18.7 The MIE-NN Method 18.8 Hybrid Approaches References 19: Calculation of the Absolute Entropy from a Single Monte Carlo Sample 19.1 The Hypothetical Scanning (HS) Method for SAWs 19.1.1 An Exact HS Method 19.1.2 Approximate HS Method 19.2 The HS Monte Carlo (HSMC) Method 19.3 Upper Bounds and Exact Functionals for the Free Energy 19.3.1 The Upper Bound FB 19.3.2 FB Calculated by the Reversed Schmidt Procedure 19.3.3 A Gaussian Estimation of FB 19.3.4 Exact Expression for the Free Energy 19.3.5 The Correlation Between sA and FA 19.3.6 Entropy Results for SAWs on a Square Lattice 19.4 HS and HSMC Applied to the Ising Model 19.5 The HS and HSMC Methods for a Continuum Fluid 19.5.1 The HS Method 19.5.2 The HSMC Method 19.5.3 Results for Argon and Water 19.5.3.1 Results for Argon 19.5.3.2 Results for Water 19.6 HSMD Applied to a Peptide 19.6.1 Applications 19.7 The HSMD-TI Method 19.8 The LS Method 19.8.1 The LS Method Applied to the Ising Model 19.8.2 The LS Method Applied to a Peptide References 20: The Potential of Mean Force, Umbrella Sampling, and Related Techniques 20.1 Umbrella Sampling 20.2 Bennett’s Acceptance Ratio 20.3 The Potential of Mean Force 20.3.1 Applications 20.4 The Self-Consistent Histogram Method 20.4.1 Free Energy from a Single Simulation 20.4.2 Multiple Simulations and The Self-Consistent Procedure 20.5 The Weighted Histogram Analysis Method 20.5.1 The Single Histogram Equations 20.5.2 The WHAM Equations 20.5.3 Enhancements of WHAM 20.5.4 The Basic MBAR Equation 20.5.5 ST-WHAM and UIM 20.5.6 Summary References 21: Advanced Simulation Methods and Free Energy Techniques 21.1 Replica-Exchange 21.1.1 Temperature-Based REM 21.1.2 Hamiltonian-Dependent Replica Exchange 21.2 The Multicanonical Method 21.2.1 Applications 21.2.2 MUCA-Summary 21.3 The Method of Wang and Landau 21.3.1 The Wang and Landau Method-Applications 21.4 The Method of Expanded Ensembles 21.4.1 The Method of Expanded Ensembles-Applications 21.5 The Adaptive Integration Method 21.6 Methods Based on Jarzynski’s Identity 21.6.1 Jarzynski’s Identity versus Other Methods for Calculating ΔF 21.7 Summary References 22: Simulation of the Chemical Potential 22.1 The Widom Insertion Method 22.2 The Deletion Procedure 22.3 Personage’s Method for Treating Deletion 22.4 Introduction of a Hard Sphere 22.5 The Ideal Gas Gauge Method 22.6 Calculation of the Chemical Potential of a Polymer by the Scanning Method 22.7 The Incremental Chemical Potential Method for Polymers 22.8 Calculation of µ by Thermodynamic Integration References 23: The Absolute Free Energy of Binding 23.1 The Law of Mass Action 23.2 Chemical Potential, Fugacity, and Activity of an Ideal Gas 23.2.1 Thermodynamics 23.2.2 Canonical Ensemble 23.2.3 NpT Ensemble 23.3 Chemical Potential in Ideal Solutions: Raoult’s and Henry’s Laws 23.3.1 Raoult’s Law 23.3.2 Henry’s Law 23.4 Chemical Potential in Non-ideal Solutions 23.4.1 Solvent 23.4.2 Solute 23.5 Thermodynamic Treatment of Chemical Equilibrium 23.6 Chemical Equilibrium in Ideal Gas Mixtures: Statistical Mechanics 23.7 Pressure-Dependent Equilibrium Constant of Ideal Gas Mixtures 23.8 Protein-Ligand Binding 23.8.1 Standard Methods for Calculating .A0 23.8.2 Calculating .A0 by HSMD-TI 23.8.3 HSMD-TI Applied to the FKBP12-FK506 Complex: Equilibration 23.8.4 The Internal and External Entropies 23.8.5 TI Results for FKBP12-FK506 23.8.6 .A0 Results for FKBP12-FK506 23.9 Summary References Appendix Index