دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: آموزشی ویرایش: نویسندگان: Ilka Parchmann, Shirley Simon, Jan Apotheker سری: Advances in Chemistry Education ISBN (شابک) : 1788015088, 9781788015080 ناشر: Royal Society of Chemistry سال نشر: 2020 تعداد صفحات: 299 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 5 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Engaging Learners with Chemistry: Projects to Stimulate Interest and Participation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب درگیر کردن زبان آموزان با شیمی: پروژه هایی برای تحریک علاقه و مشارکت نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بسیاری از پروژهها در سالهای اخیر از ابزارهای یادگیری و مشارکت مبتنی بر زمینه برای تقویت تعامل بلندمدت دانشآموز با شیمی استفاده کردهاند. در حالی که شواهد تجربی اثرات مثبت رویکردهای یادگیری مبتنی بر زمینه را بر علاقه دانشآموزان نشان میدهند، اثرات بلندمدت بر مشارکت دانشآموز تا کنون به اندازه کافی برجسته نشده است.
ویرایش شده توسط محققان محترم آموزش شیمی، و با مشارکت پزشکان در سراسر جهان، Engaging Learners with Chemistry رویکردهایی را ارائه میکند که با موفقیت آزمایش شده و بر اساس معیارهای مختلف اجرا شدهاند. از جمله تعامل آموزنده، تعاملی و مشارکتی، ضمن در نظر گرفتن دیدگاه شهروندی و شغلی.
این کتاب با گردآوری آخرین تحقیقات در یک جلد، برای معلمان شیمی و محققان مفید خواهد بود. در آموزش شیمی و متخصصان در صنایع شیمیایی به دنبال جذب دانشجویان برای مشاغل در بخش شیمی هستند.
Many projects in recent years have applied context-based learning and engagement tools to the fostering of long-term student engagement with chemistry. While empirical evidence shows the positive effects of context-based learning approaches on students’ interest, the long-term effects on student engagement have not been sufficiently highlighted up to now.
Edited by respected chemistry education researchers, and with contributions from practitioners across the world, Engaging Learners with Chemistry sets out the approaches that have been successfully tested and implemented according to different criteria, including informative, interactive, and participatory engagement, while also considering citizenship and career perspectives.
Bringing together the latest research in one volume, this book will be useful for chemistry teachers, researchers in chemistry education and professionals in the chemical industry seeking to attract students to careers in the chemical sector.
Cover Preface Contents Chapter 1 Engaging Learners with Chemistry: How Can We Better Understand and Design Supporting Structures and Programs? 1.1 Introduction 1.2 Engagement in Science and the Specific Niche of Chemistry—Still a Challenge 1.3 Engagement—Characterizing a Term to Better Address Measures 1.4 How to Understand Personal Choices for or Against Engagement in Science? 1.5 How to Design Learning Environments, How to Investigate and Model Interactions? 1.6 How to Design Activities? 1.7 Do Not Forget the Stakeholders: A Systems Thinking Perspective The Storyline of the Book—Chapter Overview References Chapter 2 Complexity, Intellectual Challenge and Ongoing Support: Key Learning Conditions to Enhance Students\' Engagement in STEM Education 2.1 Introduction 2.2 Understanding Student Choice: Moving Beyond Assumptions 2.3 Effective STEM Education: Creating Conditions for Student Engagement 2.4 Exploring Conditions for Effective STEM Learning 2.4.1 The National Virtual School of Emerging Sciences (NVSES) 2.4.2 The Graduate Certificate of STEM Education 2.5 Complexity of the Learning Environment 2.6 Providing Intellectual Challenge 2.7 Providing Ongoing Support for Learning 2.8 Conclusion Acknowledgements References Chapter 3 Being a Scientist: The Role of Practical Research Projects in School Science 3.1 Introduction and Context 3.2 What are Practical Research Projects? 3.3 Some Examples of Opportunities for Students to Undertake Practical Research Projects 3.4 Why are Practical Research Projects Seen as Important? 3.4.1 Perspectives from the Research Literature 3.4.2 Perspectives from People Associated with Practical Research Projects 3.5 The Systematic Review of Research into theImpacts of Practical Research Projects in Science 3.5.1 Review Methods 3.5.2 Review Findings 3.6 The Views of Students and Teachers Participating in Practical Research Projects 3.6.1 Students\' Views 3.6.2 Teachers\' Views 3.7 Conclusions Acknowledgements References Chapter 4 Engagement and Relevance Through Context-based, Everyday Life, Open-ended Chemistry Problems 4.1 Context-based Learning 4.1.1 Context in the Framework of the Swedish Curriculum 4.2 Problem Solving and Higher-order Thinking 4.3 Relevance, Interest and Engagement 4.4 Design-based Research 4.5 Involvement of Teachers for the Empirical Study 4.6 Teachers\' Opinion about the Old and Suggestions about New Context-based Tasks 4.7 Developing Concrete Examples of Context-based Problems from Teachers\' Ideas 4.8 Implications for Teaching 4.9 Outlook and Final Reflections Acknowledgements References Chapter 5 Development of a Context-based Learning Model Where Teachers Link Regional Companies and Science Classes Utilizing Relevance to Students 5.1 Introduction 5.2 Construction of a Class Model Linking Local Companies and Science Lessons 5.3 Development of Teaching Materials Based ona Lesson Model Connecting Local Companies and Science Lessons 5.4 Practice and Evaluation Method of Teaching Materials Based on a Lesson Model Connecting Regional Companies and Science Lessons 5.4.1 Lesson Flow Using \'Artificial Kidneys\' as a Teaching Material 5.4.2 Survey Method 5.5 Conclusion 5.5.1 Career Choice 5.5.2 About Science 5.6 Discussion Acknowledgements References Chapter 6 Cooperating With Companies Helps to Make Science Education More Relevant to School Students 6.1 Introduction 6.2 The Shortage of Skilled Workers for STEM-related Jobs 6.3 Factors Influencing Students\' Career Decisions 6.4 STEM-careers and Companies as Contexts 6.4.1 Fostering Student Interest 6.4.2 Showing Students Relevance and Applications 6.5 The Project PANaMa 6.6 Two Best Practice Examples of Successful Cooperation 6.6.1 Learning About a Waste Treatment Plant, Careers in the Energy Sector and Flue Gas Cleaning 6.6.2 Learning About a Facility Working in Aquaculture Research, Careers in the Research Field and Ecological Factors 6.7 Attitudes and Feedback 6.8 Professional Teacher Development 6.9 Discussion Acknowledgements References Chapter 7 Teaching and Learning Science From the Perspective of Industry Contexts 7.1 Introduction 7.2 Industry Relevance to Science Education 7.3 Approaches to Introducing Industry into Science Classrooms 7.4 The Concept of Industrial Content Knowledge (ICK) 7.5 The Teaching and Learning Unit \'Holes\' 7.5.1 Structure and Activities 7.5.2 Relevant Industrial Fields 7.6 Applying the ICK Classification to the \'Holes\' Unit 7.6.1 Examples of ICK Engagement in Introductory Subunit (Visible Holes) 7.6.2 Examples of ICK Engagement in Intermediate Level Subunit 2 (Invisible Holes) 7.6.3 Example of ICK Engagement in Advanced Level Subunit (Interesting Holes) 7.7 Conclusion Acknowledgements References Chapter 8 Research Visits as Nuclei for Educational Programs 8.1 Introduction 8.1.1 Outreach Programs in University Laboratories 8.1.2 The Nature of Science 8.2 Three Different Programs at the Weizmann Institute of Science Research Laboratories 8.2.1 \'Hemed\' chemistry 8.2.2 Alpha Program for Gifted Students 8.2.3 Rothschild–Weizmann Research Lab Experience for Teachers 8.3 Summary and Outlook Acknowledgements References Chapter 9 Fostering Scientific Literacy with the Language of Sciencein the Production of a Nano-based After-sun Care Productin an Extracurricular Setting: A CLIL Approach in a Science Lab for School Students 9.1 Introduction 9.2 Theoretical Background 9.2.1 Content and Language Integrated Learning (CLIL) 9.2.2 Previous Studies on CLIL Effects on Students\' Learning in a Science Subject 9.2.3 Research on the Effect of CLIL on Content Knowledge 9.2.4 Research on Affective Components 9.2.5 Research on Gender Effects 9.3 Bilingual Education in Germany 9.4 Bilingual Scientific Literacy in a Science Lab for School Students 9.5 Science Labs for Students as Extracurricular Settings 9.5.1 Previous Research on the Settings of Science Labs for School Students 9.5.2 Authenticity 9.5.3 Authenticity in the Context of a Bilingual Science Lab For School Students 9.6 Overall Research Design 9.6.1 Theoretical Foundation and Objectives 9.6.2 Sample and Setting 9.6.3 Instruments 9.7 First Findings on the Monolingual Treatment 9.8 Exemplary Experimental Station on the Production of a Nano-based After-sun Care Product 9.8.1 After-sun Care Product: Preparation of an Active Ingredient out of the Hydrocarbon Azulene as an Experimental Station at the LMU chemlab 9.8.2 Azulene: The Chemistry Behind the Experiment 9.8.3 Video for School Preparation: Scientist and Researcher Explains the Topic of the Experimental Station 9.8.4 Experimental Station Setup: The Production of an After-sun Care Product on a Nanoparticle Base 9.8.5 Post-processing: Expert Groups Explain Their Station to Their Fellow Students 9.9 Future Prospects 9.10 Outlook References Chapter 10 Enhancing School Students\' Engagement in Chemistry Through a University-led Enrichment Programme 10.1 Introduction 10.2 Background 10.3 The Intervention Programme 10.3.1 Intervention Aims 10.3.2 Overview of the Programme 10.3.3 Contextual Overview of the Six Participating Schools 10.3.4 Learning Outcomes of the Intervention Programme 10.4 Evaluation of the Intervention Programme 10.4.1 Introduction 10.4.2 Year 1 of the Intervention (Year 8 students—Age 13) 10.4.3 Year 2 of the Intervention (Year 9 students—Age 14) 10.4.4 Year 3 Intervention Programme (Year 10 Students—Age 15) 10.4.5 Year 4 (Y11—Age 16) 10.4.6 Summary of the Statistical Analysis Across All of the Events 10.5 The Interview Study 10.6 Conclusions Acknowledgements References Chapter 11 Can Participation in a Citizen Science Project Empower Schoolchildren to Believe in Their Ability to Act on Environmental Problems? 11.1 Introduction 11.2 The Marine Litter Problem as an Opportunity for Citizen Science 11.3 Following the Pathways of Plastic Litter—Combining Citizen Science with School Student Education 11.3.1 How to Identify Effects? An Accompanying Empirical Study 11.4 Results 11.4.1 Nature of Science 11.4.2 Expectation of Success 11.4.3 Expectation of Outcome 11.4.4 Expectation of Self-efficacy 11.5 Discussion 11.6 Conclusion and Outlook Acknowledgements References Chapter 12 The Use of Contexts in Chemistry Education: A Reflection on System Levels and Stakeholder Involvement 12.1 Introduction: Influences on Curriculum Development 12.1.1 Pedagogical Changes 12.1.2 International Perspectives: Comparisons, Similar Demands and Joint Ventures 12.2 Insights into Developments in the Netherlands 12.2.1 First Experiments with Context-oriented Education in the Netherlands 12.2.2 Central Examination 2019 12.3 Stakeholders in Educational Change 12.4 Side Results of the Pilot 12.5 Further Developments 12.6 Conclusion References Chapter 13 Conclusions 13.1 How is Engagement Understood? 13.2 What Conditions and Approaches Enhance Engagement? 13.2.1 Quality Learning Environments 13.2.2 Practical Research Projects 13.2.3 Context-based Learning 13.2.4 Connecting Students with Industry 13.2.5 Science Outreach Activities 13.3 Engagement and Aspiration 13.4 What are the Ways Forward? References Subject Index